Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791537

RESUMO

Many years of foundry practice and much more accurate analytical methods have shown that sands with organic binders, in addition to their many technological advantages, pose risks associated with the emission of many compounds, including harmful ones (e.g., formaldehyde, phenol, benzene, polycyclic aromatic hydrocarbons, and sulfur), arising during the pouring of liquid casting alloys into molds, their cooling, and knock-out. The aim of this research is to demonstrate the potential benefits of adopting inorganic binders in European iron foundries. This will improve the environmental and working conditions by introducing cleaner and more ecological production methods, while also ranking the tested binders studied in terms of their harmful content. The article pays special attention to the analysis of seven innovative inorganic binders and one organic binder, acting as a reference for emissions of gases from the BTEX (benzene, toluene, ethylbenzene, and xylenes) and PAHs (polycyclic aromatic hydrocarbons) groups and other compounds such as phenol, formaldehyde, and isocyanates (MDI and TDI) generated during the mold pouring process with liquid metals. The knowledge gained will, for the first time, enrich the database needed to update the Reference Document on The Best Available Techniques for the Smitheries and Foundries Industry (SF BREF).


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Compostos Inorgânicos/química , Metalurgia , Formaldeído/química
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003646

RESUMO

Mixed manganese-zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, one-step method. The composition of Mn0.48Zn0.46Fe2.06O4 was found to have a strong thermal dependence of magnetization in the temperature range between 5 and 50 °C. Nanoparticles suspended in an agar gel mimicking animal tissue and showing non-significant impact on cell viability in the biological test were studied with NMR and MRI over the same temperature range. For the concentration of 0.017 mg/mL of Fe, the spin-spin relaxation time T2 increased from 3.1 to 8.3 ms, while longitudinal relaxation time T1 shows a moderate decrease from 149.0 to 125.1 ms. A temperature map of the phantom exposed to the radial temperature gradient obtained by heating it with an 808 nm laser was calculated from T2 weighted spin-echo differential MR images. Analysis of temperature maps yields thermal/spatial resolution of 3.2 °C at the distance of 2.9 mm. The experimental relaxation rate R2 data of water protons were compared with those obtained from calculations using a theoretical model incorporating the motion averaging regime.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Temperatura , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Água , Nanopartículas/química
3.
Dalton Trans ; 52(40): 14649-14662, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37791584

RESUMO

This study investigates the impacts of structure and composition on the optical and electronic properties of a series of pyridinium-based bismuth iodide complexes. Organic substrates with various functional groups, such as 4-aminopyridine (4-Ampy), 4-methylpyridine (4-Mepy), 4-dimethylaminopyridine (4-Dmapy), and 4-pyridinecarbonitrile (4-CNpy) with different electron-donating and electron-withdrawing groups at the para position of the pyridine ring were employed. Crystallographic analysis reveals various bismuth iodide structures, including 1D chains and discrete 0D motifs. The optical band gap of these materials, identified via diffuse reflectance spectroscopy (DRS) and verified with density functional theory (DFT) calculations, is influenced by the crystal packing and stabilising interactions. Through a comprehensive analysis, including Hirshfeld surface (HS) and void assessment, the study underscores the influence of noncovalent intermolecular interactions on crystal packing. Spectroscopic evaluations provide insights into electronic interactions, elucidating the role of electron donor and acceptor substituents within the lattice. Thermogravimetric differential thermal analysis (TG-DTA) indicates structural stability up to 250 °C. Linear sweep voltammetry (LSV) reveals significant conductivity in the range of 10-20 mS per pixel at 298.15 K. X-ray absorption spectroscopy (XAS) at the Bi L3 edge indicates a similar oxidation state and electronic environment across all samples, underscoring the role of bismuth centres surrounded by iodides.

4.
Carbohydr Polym ; 312: 120756, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059523

RESUMO

In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.


Assuntos
Quitosana , Vírus , Animais , Camundongos , Quitosana/química , Álcool de Polivinil/química , Glutaral/química , Células NIH 3T3
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982758

RESUMO

The aim of this project is to fabricate hydrogen-rich silicone doped with magnetic nanoparticles for use as a temperature change indicator in magnetic resonance imaging-guided (MRIg) thermal ablations. To avoid clustering, the particles of mixed MnZn ferrite were synthesized directly in a medical-grade silicone polymer solution. The particles were characterized by transmission electron microscopy, powder X-ray diffraction, soft X-ray absorption spectroscopy, vibrating sample magnetometry, temperature-dependent nuclear magnetic resonance relaxometry (20 °C to 60 °C, at 3.0 T), and magnetic resonance imaging (at 3.0 T). Synthesized nanoparticles were the size of 4.4 nm ± 2.1 nm and exhibited superparamagnetic behavior. Bulk silicone material showed a good shape stability within the study's temperature range. Embedded nanoparticles did not influence spin-lattice relaxation, but they shorten the longer component of spin-spin nuclear relaxation times of silicone's protons. However, these protons exhibited an extremely high r2* relaxivity (above 1200 L s-1 mmol-1) due to the presence of particles, with a moderate decrease in the magnetization with temperature. With an increased temperature decrease of r2*, this ferro-silicone can be potentially used as a temperature indicator in high-temperature MRIg ablations (40 °C to 60 °C).


Assuntos
Manganês , Nanopartículas , Prótons , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Zinco/química
6.
Chem Mater ; 34(9): 4001-4018, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35573108

RESUMO

Superparamagnetic ferrite nanoparticles coated with a polymer layer are widely used for biomedical applications. The objective of this work is to design nanoparticles as a magnetic resonance imaging (MRI) temperature-sensitive contrast agent. Copper-zinc ferrite nanoparticles coated with a poly(ethylene glycol) (PEG) layer are synthesized using a one-step thermal decomposition method in a polymer matrix. The resulting nanoparticles are stable in water and biocompatible. Using Mössbauer spectroscopy and magnetometry, it was determined that the grown nanoparticles exhibit superparamagnetic properties. Embedding these particles into an agarose gel resulted in significant modification of water proton relaxation times T 1, T 2, and T 2* determined by nuclear magnetic resonance measurements. The results of the spin-echo T 2-weighted MR images of an aqueous phantom with embedded Cu0.08Zn0.54Fe2.38O4 nanoparticles in the presence of a strong temperature gradient show a strong correlation between the temperature and the image intensity. The presented results support the hypothesis that CuZn ferrite nanoparticles can be used as a contrast agent for MRI thermometry.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121337, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35537264

RESUMO

The core size of iron oxide nanoparticles (IONPs) is a crucial factor defining not only their magnetic properties but also toxicological profile and biocompatibility. On the other hand, particular IONPs may induce different biological response depending on the dose, exposure time, but mainly depending on the examined system. New light on this problem may be shed by the information concerning biomolecular anomalies appearing in various cell lines in response to the action of IONPs with different core diameters and this was accomplished in the present study. Using Raman microscopy we studied the abnormalities in the accumulation of proteins, lipids and organic matter within the nucleus, cytoplasm and cellular membrane of macrophages, HEK293T and U87MG cell line occurring as a result of 24-hour long exposure to PEG-coated magnetite IONPs. The examined nanoparticles had 5, 10 and 30 nm cores and were administered in doses 5 and 25 µg Fe/ml. The obtained results showed significant anomalies in biochemical composition of macrophages and the U87MG cells, but not the HEK293T cells, occurring as a result of exposure to all of the examined nanoparticles. However, IONPs with 10 nm core diminished the accumulation of biomolecules in cells only when they were administered at a larger dose. The Raman spectra recorded for the macrophages subjected to 30 nm IONPs and for the U87MG cells exposed to 5 and 10 nm showed the presence of additional bands in the wavenumber range 1700-2400 cm-1, probably resulting from the appearance of Fe adducts within cells. Our results indicate, moreover, that smaller IONPs may be effectively internalized into the U87MG cells, which points at their diagnostic/therapeutic potential in the case of glioblastoma multiforme.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Compostos Férricos/toxicidade , Óxido Ferroso-Férrico , Células HEK293 , Humanos , Macrófagos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Nanopartículas/química
8.
Chem Mater ; 34(2): 809-825, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35095188

RESUMO

A new indium precursor, namely, indium(II) chloride, was tested as a precursor in the synthesis of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals. This new precursor, being in fact a dimer of Cl2In-InCl2 chemical structure, is significantly more reactive than InCl3, typically used in the preparation of these types of nanocrystals. This was evidenced by carrying out comparative syntheses under the same reaction conditions using these two indium precursors in combination with the same silver (AgNO3) and zinc (zinc stearate) precursors. In particular, the use of indium(II) chloride in combination with low concentrations of the zinc precursor yielded spherical-shaped (D = 3.7-6.2 nm) Ag-In-Zn-S nanocrystals, whereas for higher concentrations of this precursor, rodlike nanoparticles (L = 9-10 nm) were obtained. In all cases, the resulting nanocrystals were enriched in indium (In/Ag = 1.5-10.3). Enhanced indium precursor conversion and formation of anisotropic, longitudinal nanoparticles were closely related to the presence of thiocarboxylic acid type of ligands in the reaction mixture. These ligands were generated in situ and subsequently bound to surfacial In(III) cations in the growing nanocrystals. The use of the new precursor of enhanced reactivity facilitated precise tuning of the photoluminescence color of the resulting nanocrystals in the spectral range from ca. 730 to 530 nm with photoluminescence quantum yield (PLQY) varying from 20 to 40%. The fabricated Ag-In-S and Ag-In-Zn-S nanocrystals exhibited the longest, reported to date, photoluminescence lifetimes of ∼9.4 and ∼1.4 µs, respectively. It was also demonstrated for the first time that ternary (Ag-In-S) and quaternary (Ag-In-Zn-S) nanocrystals could be applied as efficient photocatalysts, active under visible light (green) illumination, in the reaction of aldehydes reduction to alcohols.

9.
Materials (Basel) ; 14(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065627

RESUMO

The assessment of the harmfulness of moulding and core sands is mainly based on investigations of compositions of gases emitted by liquid casting alloys during the mould pouring. The results of investigations of moulding sands obtained under industrial conditions are presented in this paper. A unique research stand was designed and built for this aim. It allowed us to determine emissions of gases at individual stages of casting a mass up to 50 kg. This approach enables simulation of foundry conditions. Moulding sands bound by organic binders (phenol-formaldehyde; furan), inorganic binders and green sand, were subjected to investigations. The composition of gases that evolved during the individual stages, pouring, cooling and knocking out, was tested each time, and the contents of Polycyclic Aromatic Hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylenes (BETX) were analysed. Investigations indicated that the emission of gases from sands with inorganic binders is negligible when compared with the emission of gases from sands with organic binders. The emission of gases from green sand is placed in the middle of the scale. As an example: the sand with furan resin emitted 84 mg of BTEX (in recalculation for 1 kg of sand) while from sands with inorganic binders there was a maximum of 2.2 mg (for 1 kg of sand). In the case of sands with inorganic binders, MI and MC sands indicated comparable and very low emissions of gases from the PAHs group, at the level of 0.018 mg and 0.019 mg for 1 kg of sand, respectively. The higher emission of PAHs from MG sand is the result of its different way of hardening (a binder was of an organic character) than of sands MI and MC.

10.
Polymers (Basel) ; 12(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255498

RESUMO

According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".

11.
ACS Appl Electron Mater ; 2(10): 3211-3220, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33196046

RESUMO

Single-phase multicomponent perovskite-type cobalt oxide containing five cations in equiatomic amounts on the A-site, namely, (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3, has been synthesized via the modified coprecipitation hydrothermal method. Using an original approach for heat treatment, which comprises quenching utilizing liquid nitrogen as a cooling medium, a single-phase ceramic with high configuration entropy, crystallizing in an orthorhombic distorted structure was obtained. It reveals the anomalous temperature dependence of the lattice expansion with two weak transitions at approx. 80 and 240 K that are assigned to gradual crossover from the low- via intermediate- to high-spin state of Co3+. The compound exhibits weak ferromagnetism at T ≤ 10 K and signatures of antiferromagnetic correlations in the paramagnetic phase. Ab initio calculations predict a band gap Δ = 1.18 eV in the ground-state electronic structure with the dominant contribution of O_p and Co_d orbitals in the valence and conduction bands, respectively. Electronic transport measurements confirm the negative temperature coefficient of resistivity characteristic to a semiconducting material and reveal a sudden drop in activation energy at T ∼ 240 K from E a ∼ 1 eV in the low-temperature phase to E a ∼ 0.3 eV at room temperature. The possibility of fine tuning of the semiconducting band gap via a subtle change in A-site stoichiometry is discussed.

12.
Materials (Basel) ; 13(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019784

RESUMO

Increasingly strict regulations, as well as an increased public awareness, are forcing industry, including the foundry industry, to develop new binders for molding sands, which, while being more environmentally friendly, would simultaneously ensure a high quality of castings. Until recently, binders based on synthetic resins were considered to be such binders. However, more accurate investigations indicated that such molding sands subjected to high temperatures of liquid metal generated several harmful, even dangerous substances (carcinogenic and/or mutagenic) from the benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic hydrocarbons groups (PAHs). An assessment of the most widely used molding sands technologies at present with organic binders (synthetic resins) from the no-bake group (furan no-bake and phenolic-ester no-bake) and their harmfulness to the environment and work conditions is presented in this paper. In the first stage of this research, gases (from the BTEX and PAHs groups) emitted when the tested molds were poured with liquid cast iron at 1350 °C were measured (according to the authors' own method). The second stage consisted of measuring the emission of gases released by binders subjected to pyrolysis (the so-called flash pyrolysis), which simulated the effects occurring on the boundary: liquid metal/molding sand. The gases emitted from the tested binders indicated that, in both cases, the emission of harmful and dangerous substances (e.g., benzene) occurs, but, of the given binder systems, this emission was lower for the phenolic-ester no-bake binder. The obtained emission factors of BTEX substances show higher values for furan resin compared to formaldehyde resin; for example, the concentration of benzene per 1 kg of binder for furan no-bake (FNB) was 40,158 mg, while, for phenol-formaldehyde no-bake (PFNB), it was much lower, 30,911 mg. Thus, this system was more environmentally friendly.

13.
Nanoscale ; 12(31): 16420-16426, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32744559

RESUMO

We show that the properties of superparamagnetic iron oxide nanoparticles suspended in liquids can be effectively studied using Magnetic Circular Dichroism in Resonant Inelastic X-ray Scattering. Analysis of the spectral shape and magnetic contrast produced by this experiment enables an assessment of the site distribution and magnetic state of metal ions in the spinel phase. The selective magnetization profile of particles as derived from the field dependence of dichroism empowers an estimation of particle size distribution. Furthermore, the new proposed methodology discriminates sizes that are below the detection limits of X-ray and light scattering probes and that are difficult to spot in TEM.

14.
Phys Chem Chem Phys ; 21(42): 23473-23484, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31616868

RESUMO

A broad spectrum of applications of magnetic nanoparticles leads to the need for the precise tuning of their magnetic properties. In this study, a series of magnetite and zinc-ferrite nanoparticles were successfully prepared by modified high-temperature synthesis in a controlled gas atmosphere. Nanoparticles with different zinc to iron ratios and pure Fe3O4 were obtained. The structure of the nanoparticles was studied by transmission electron microscopy and Mössbauer spectroscopy. These revealed the single domain character of the nanoparticles and the influence of the synthesis temperature and zinc to iron ratio on their shape and size. Chemical structure was characterized by inductively coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis. X-ray photoelectron spectroscopy coupled with an argon gas cluster ion beam (Ar-GCIB) allowed the study of subsequent layers of the nanoparticles without altering their chemical structure. This revealed the presence of a carbon layer on all nanoparticles consisting of capping agents used in the synthesis and revealed the core-shell character of the zinc ferrite particles. In addition, different types of zinc infusions in the nanoparticle structure were observed when using different Zn/Fe ratios. Finally, magnetic studies performed by means of vibrating sample magnetometry proved the superparamagnetic behavior of all the samples.

15.
Materials (Basel) ; 12(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934985

RESUMO

Synthesis of spinel zinc ferrite ultrafine needle-like particles that exhibit exceptional stability in aqueous dispersion (without any surfactants) and superparamagnetic response is reported. Comprehensive structural and magnetic characterization of the particles is performed using X-ray and electron diffraction, small angle X-ray scattering, transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, Mössbauer spectroscopy and high-resolution X-ray spectroscopy. It reveals nearly stoichiometric ZnFe2O4 nanorods with mixed spinel structure and unimodal size distribution of mean length of 20 nm and diameter of 5 nm. Measurements performed in aqueous and dried form shows that particles' properties are significantly changed as a result of drying.

16.
Inorg Chem ; 58(2): 1358-1370, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30607944

RESUMO

The presented research is focused on the synthesis of alloyed Ag-In-Zn-S colloidal nanocrystals from a mixture of simple metal precursors such as AgNO3, InCl3, zinc stearate combined with 1-dodecanethiol (DDT), 1-octadecene (ODE), and sulfur dissolved in oleylamine (OLA). In particular, the focus is on the effect of the solvent (ODE vs 1,2-dichlorobenzene (DCB)) and the type of sulfur precursor (S/OLA vs S/ n-octylamine (OCA)) on the metal precursors reactivates and on the chemical composition, crystal structure, and luminescent properties of the resulting nanocrystals. The replacement of ODE by DCB as a solvent lowers the reactivity of metal precursors and results in a 3-fold decrease of the photoluminescence quantum yields (Q.Y.) values (from 67% to 21%). This negative effect can be fully compensated by the use of S/OCA as a source of sulfur instead of S/OLA (Q.Y. increases from 21% to 64%). NMR studies of the isolated organic phase indicate that the S/OLA precursor generates two types of ligands being products of ( Z)-1-amino-9-octadecene (OLA) hydrogenation. These are "surface bound" 1-aminooctadecane (C18H37NH2) and crystal bound, i.e., alkyl chain covalently bound to the nanocrystal surface via surfacial sulfur (C18H37-NH-S crystal). Highly luminescent Ag-In-Zn-S nanocrystals exhibit a cation-enriched (predominantly indium) surface and are stabilized by a 1-aminooctadecane ligand, which shows more flexibility than OLA. These investigations were completed by hydrophilization of nanocrystals obtained via exchange of the primary ligands for 11-mercaptoundecanoic acid, (MUA) with only a 2-fold decrease of photoluminescence Q.Y. in the most successful case (from 67% to 31%). Finally, through ligand exchange, an electroactive inorganic/organic hybrid was obtained, namely, Ag-In-Zn-S/7-octyloxyphenazine-2-thiol, in which its organic part fully retained its electrochemical activity.

17.
Materials (Basel) ; 11(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486447

RESUMO

Cancer is among the leading causes of death worldwide, thus there is a constant demand for new solutions, which may increase the effectiveness of anti-cancer therapies. We have designed and successfully obtained a novel, bifunctional, hybrid system composed of colloidally stabilized superparamagnetic iron oxide nanoparticles (SPION) and curcumin containing water-soluble conjugate with potential application in anticancer hyperthermia and as nanocarriers of curcumin. The obtained nanoparticulate system was thoroughly studied in respect to the size, morphology, surface charge, magnetic properties as well as some biological functions. The results revealed that the obtained nanoparticles, ca. 50 nm in diameter, were the agglomerates of primary particles with the magnetic, iron oxide cores of ca. 13 nm, separated by a thin layer of the applied cationic derivative of chitosan. These agglomerates were further coated with a thin layer of the sodium alginate conjugate of curcumin and the presence of both polymers was confirmed using thermogravimetry. The system was also proven to be applicable in magnetic hyperthermia induced by the oscillating magnetic field. A high specific absorption rate (SAR) of 280 [W/g] was registered. The nanoparticles were shown to be effectively uptaken by model cells. They were found also to be nontoxic in the therapeutically relevant concentration in in vitro studies. The obtained results indicate the high application potential of the new hybrid system in combination of magnetic hyperthermia with delivery of curcumin active agent.

18.
Water Air Soil Pollut ; 227(1): 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26691207

RESUMO

Metalcasting involves having a molten metal poured in a hollow mould to produce metal objects. These moulds are generally made of sand and are chemically bonded, clay-bonded, or even unbounded. There are many binder systems used. Binders based on furfuryl resins constitute currently the highest fraction in the binders no-bake group. Moulding sand, after knocking out the cast, is partially reclaimed, and the remaining part, known as waste foundry sand is used or stored outside the foundry. In this case, the environment hazardous organic compounds and metals can be leached from the moulding sand, thus causing pollution of water and soil. Also during the casting moulds with molten metal, they emit pyrolysis gases containing many different compounds, often dangerous from the BTEX and PAH group, which has adverse impacts on the environment and workers. The article presents the results of research on the impact of the regenerate addition to the moulding sand matrix on emitted gases and the degree of threat to the environment due to leaching of hazardous components. Therefore, for the total assessment of the moulding sands harmfulness, it is necessary to perform investigations concerning the dangerous substances elution into the environment during their management and storage, as well as investigations concerning emissions of hazardous substances (especially from the BTEX and PAHs group) during moulds pouring, cooling, and casting knocking out. Both kinds of investigations indicated that reclaimed sand additions to moulding sands have significantly negative influence on the environment and working conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...