Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(8)2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456020

RESUMO

Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.


Assuntos
Fibrose Pulmonar Idiopática , Proteínas de Ligação a Tacrolimo , Humanos , Imunoglobulina G , Peptidilprolil Isomerase/metabolismo , Plasmócitos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
2.
Matrix Biol Plus ; 1: 100005, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33543004

RESUMO

Lung fibrosis is characterized by excessive deposition of extracellular matrix (ECM), in particular collagens, by fibroblasts in the interstitium. Transforming growth factor-ß1 (TGF-ß1) alters the expression of many extracellular matrix (ECM) components produced by fibroblasts, but such changes in ECM composition as well as modulation of collagen post-translational modification (PTM) levels have not been comprehensively investigated. Here, we performed mass spectrometry (MS)-based proteomics analyses to assess changes in the ECM deposited by cultured lung fibroblasts from idiopathic pulmonary fibrosis (IPF) patients upon stimulation with transforming growth factor ß1 (TGF-ß1). In addition to the ECM changes commonly associated with lung fibrosis, MS-based label-free quantification revealed profound effects on enzymes involved in ECM crosslinking and turnover as well as multiple positive and negative feedback mechanisms of TGF-ß1 signaling. Notably, the ECM changes observed in this in vitro model correlated significantly with ECM changes observed in patient samples. Because collagens are subject to multiple PTMs with major implications in disease, we implemented a new bioinformatic platform to analyze MS data that allows for the comprehensive mapping and site-specific quantitation of collagen PTMs in crude ECM preparations. These analyses yielded a comprehensive map of prolyl and lysyl hydroxylations as well as lysyl glycosylations for 15 collagen chains. In addition, site-specific PTM analysis revealed novel sites of prolyl-3-hydroxylation and lysyl glycosylation in type I collagen. Interestingly, the results show, for the first time, that TGF-ß1 can modulate prolyl-3-hydroxylation and glycosylation in a site-specific manner. Taken together, this proof of concept study not only reveals unanticipated TGF-ß1 mediated regulation of collagen PTMs and other ECM components but also lays the foundation for dissecting their key roles in health and disease. The proteomic data has been deposited to the ProteomeXchange Consortium via the MassIVE partner repository with the data set identifier MSV000082958.

3.
Respir Res ; 19(1): 67, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673351

RESUMO

BACKGROUND: In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. METHODS: Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-ß1 (TGF-ß1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. RESULTS: FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. CONCLUSIONS: These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.


Assuntos
Movimento Celular/fisiologia , Colágeno Tipo VI/biossíntese , Fibroblastos/metabolismo , Pulmão/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Células Cultivadas , Técnicas de Inativação de Genes , Humanos , Pulmão/citologia , Proteínas de Ligação a Tacrolimo/deficiência
4.
Am J Respir Cell Mol Biol ; 57(1): 77-90, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28257580

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix, in particular, collagens. Two IPF therapeutics, nintedanib and pirfenidone, decelerate lung function decline, but their underlying mechanisms of action are poorly understood. In this study, we sought to analyze their effects on collagen synthesis and maturation at important regulatory levels. Primary human fibroblasts from patients with IPF and healthy donors were treated with nintedanib (0.01-1.0 µM) or pirfenidone (100-1,000 µM) in the absence or presence of transforming growth factor-ß1. Effects on collagen, fibronectin, FKBP10, and HSP47 expression, and collagen I and III secretion, were analyzed by quantitative polymerase chain reaction and Western blot. The appearance of collagen fibrils was monitored by scanning electron microscopy, and the kinetics of collagen fibril assembly was assessed using a light-scattering approach. In IPF fibroblasts, nintedanib reduced the expression of collagen I and V, fibronectin, and FKBP10 and attenuated the secretion of collagen I and III. Pirfenidone also down-regulated collagen V but otherwise showed fewer and less pronounced effects. By and large, the effects were similar in donor fibroblasts. For both drugs, electron microscopy of IPF fibroblast cultures revealed fewer and thinner collagen fibrils compared with untreated controls. Finally, both drugs dose-dependently delayed fibril formation of purified collagen I. In summary, both drugs act on important regulatory levels in collagen synthesis and processing. Nintedanib was more effective in down-regulating profibrotic gene expression and collagen secretion. Importantly, both drugs inhibited collagen I fibril formation and caused a reduction in and an altered appearance of collagen fibril bundles, representing a completely novel mechanism of action for both drugs.


Assuntos
Colágenos Fibrilares/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Indóis/uso terapêutico , Piridonas/uso terapêutico , Colágeno Tipo I/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Indóis/farmacologia , Pulmão/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Piridonas/farmacologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Transcrição Gênica/efeitos dos fármacos
5.
Am J Respir Crit Care Med ; 192(4): 455-67, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26039104

RESUMO

RATIONALE: Increased abundance and stiffness of the extracellular matrix, in particular collagens, is a hallmark of idiopathic pulmonary fibrosis (IPF). FK506-binding protein 10 (FKBP10) is a collagen chaperone, mutations of which have been indicated in the reduction of extracellular matrix stiffness (e.g., in osteogenesis imperfecta). OBJECTIVES: To assess the expression and function of FKBP10 in IPF. METHODS: We assessed FKBP10 expression in bleomycin-induced lung fibrosis (using quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence), analyzed microarray data from 99 patients with IPF and 43 control subjects from a U.S. cohort, and performed Western blot analysis from 6 patients with IPF and 5 control subjects from a German cohort. Subcellular localization of FKBP10 was assessed by immunofluorescent stainings. The expression and function of FKBP10, as well as its regulation by endoplasmic reticulum stress or transforming growth factor-ß1, was analyzed by small interfering RNA-mediated loss-of-function experiments, quantitative reverse transcriptase-polymerase chain reaction, Western blot, and quantification of secreted collagens in the lung and in primary human lung fibroblasts (phLF). Effects on collagen secretion were compared with those of the drugs nintedanib and pirfenidone, recently approved for IPF. MEASUREMENTS AND MAIN RESULTS: FKBP10 expression was up-regulated in bleomycin-induced lung fibrosis and IPF. Immunofluorescent stainings demonstrated localization to interstitial (myo)fibroblasts and CD68(+) macrophages. Transforming growth factor-ß1, but not endoplasmic reticulum stress, induced FKBP10 expression in phLF. The small interfering RNA-mediated knockdown of FKBP10 attenuated expression of profibrotic mediators and effectors, including collagens I and V and α-smooth muscle actin, on the transcript and protein level. Importantly, loss of FKBP10 expression significantly suppressed collagen secretion by phLF. CONCLUSIONS: FKBP10 might be a novel drug target for IPF.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Adulto , Animais , Bleomicina , Estudos de Casos e Controles , Técnicas de Cultura de Células , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...