Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Drug Alcohol Depend ; 258: 111272, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555662

RESUMO

BACKGROUND: Polysubstance use is highly prevalent among persons who use cocaine; however, little is known about how alcohol and cannabis are used with cocaine. We identified temporal patterns of cocaine+alcohol and cocaine+cannabis polysubstance use to inform more translationally relevant preclinical models. METHODS: Participants who used cocaine plus alcohol and/or cannabis at least once in the past 30 days (n=148) were interviewed using the computerized Substance Abuse Module and the newer Polysubstance Use-Temporal Patterns Section. For each day in the past 30 days, participants reported whether they had used cocaine, alcohol, and cannabis; if any combinations of use were endorsed, participants described detailed hourly use of each substance on the most "typical day" for the combination. Sequence analysis and hierarchical clustering were applied to identify patterns of timing of drug intake on typical days of cocaine polysubstance use. RESULTS: We identified five temporal patterns among the 180 sequences of reported cocaine polysubstance use: 1) limited cocaine/cocaine+alcohol use (53%); 2) extensive cannabis then cocaine+alcohol+cannabis use (22%); 3) limited alcohol/cannabis then cocaine+alcohol use (13%); 4) extensive cocaine+cannabis then cocaine+alcohol+cannabis use (4%); and 5) extensive cocaine then cocaine+alcohol use (8%). While drug intake patterns differed, prevalence of use disorders did not. CONCLUSIONS: Patterns were characterized by cocaine, alcohol, and cannabis polysubstance use and by the timing, order, duration, and quantity of episode-level substance use. The identification of real-world patterns of cocaine polysubstance use represents an important step toward developing laboratory models that accurately reflect human behavior.


Assuntos
Consumo de Bebidas Alcoólicas , Transtornos Relacionados ao Uso de Cocaína , Humanos , Masculino , Feminino , Adulto , Transtornos Relacionados ao Uso de Cocaína/epidemiologia , Consumo de Bebidas Alcoólicas/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Abuso de Maconha/epidemiologia , Fatores de Tempo
2.
Alcohol ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38290696

RESUMO

Ceftriaxone is an antibiotic that increases central nervous system (CNS) protein expression of the glutamate transporters GLT-1 and xCT and ameliorates pathological behaviors in rodent models of neurological disease and substance use disorder. However, little ceftriaxone passes through the blood-brain-barrier, the CNS binding partner of ceftriaxone is unknown, and ceftriaxone does not consistently upregulate GLT-1 and xCT in cell culture. Ceftriaxone alters the gut microbiome composition in rodents and humans, and the microbiome-gut-brain axis regulates drug-seeking. Thus, here we test the hypothesis that ceftriaxone reduces alcohol intake while ameliorating alcohol-induced disruption of the gut microbiome composition. Male and female Sprague-Dawley rats received intermittent access to alcohol (IAA) while controls received access to only water. Following 17 IAA sessions, ceftriaxone/vehicle treatment was given for 5 days. Analysis of the gut microbiome composition was assessed by 16S rRNA gene amplicon sequencing conducted on fecal pellets collected prior to and after alcohol consumption and following ceftriaxone treatment. Male rats displayed escalated alcohol intake and preference over the course of the 17 sessions; however, total alcohol intake did not differ between the sexes. Ceftriaxone reduced alcohol intake and preference in male and female rats. While alcohol affected a diverse set of amplicon sequencing variants (ASV), ceftriaxone markedly reduced the diversity of microbial communities reflected by a blooming of the Enterococcaceae family. The remaining effects of ceftriaxone, however, encompassed families both affected and unaffected by prior alcohol drinking and highlight the Ruminococcaceae and Muribaculaceae families as bidirectionally modulated by alcohol and ceftriaxone. Altogether, our study confirms that ceftriaxone reduces alcohol intake in rats and partially reverses alcohol-induced dysbiosis.

3.
Sci Rep ; 13(1): 19174, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932476

RESUMO

Opioid-alcohol polysubstance use is prevalent and worsens treatment outcomes. Here we assessed whether co-consumption of oxycodone and alcohol influence the intake of one another, demand for oxycodone, and the neurocircuitry underlying cue-primed reinstatement of oxycodone-seeking. Male and female rats underwent oxycodone intravenous self-administration (IVSA) with homecage access to alcohol (20% v/v) and/or water immediately after the IVSA session. Next, economic demand for intravenous oxycodone was assessed while access to alcohol and/or water continued. Control rats self-administered sucrose followed by access to alcohol and/or water. Rats underwent a cue-primed reinstatement test and brains were processed for c-fos mRNA expression. While both sexes decreased oxycodone intake if they had access to alcohol, and decreased alcohol intake if they had access to oxycodone, only female oxycodone + alcohol rats exhibited decreased demand elasticity and increased cue-primed reinstatement. Alcohol consumption increased the number of basolateral and central amygdala neurons activated during sucrose and oxycodone reinstatement and the number of ventral and dorsal striatum neurons engaged by sucrose reinstatement. Nucleus accumbens shell dopamine 1 receptor expressing neurons displayed activation patterns consistent with oxycodone reinstatement. Thus, alcohol alters the motivation to seek oxycodone in a sex-dependent manner and the neural circuitry engaged by cue-primed reinstatement of sucrose and oxycodone-seeking.


Assuntos
Motivação , Oxicodona , Feminino , Ratos , Masculino , Animais , Sacarose/metabolismo , Consumo de Bebidas Alcoólicas , Etanol/metabolismo , Receptores Dopaminérgicos/metabolismo , Neurônios/metabolismo , Água/metabolismo , Autoadministração , Extinção Psicológica
4.
J Neurosci ; 43(45): 7547-7553, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940590

RESUMO

Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches, which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases the benefits of novel modeling techniques, across both preclinical and clinical data.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Humanos , Aprendizado de Máquina , Assunção de Riscos
5.
bioRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546763

RESUMO

Opioid-alcohol polysubstance use is prevalent and worsens treatment outcomes. Here we assessed whether co-consumption of oxycodone and alcohol would influence intake of one another, demand for oxycodone, and the neurocircuitry underlying cue-primed reinstatement of oxycodone-seeking. Male and female rats underwent oxycodone intravenous self-administration (IVSA) with access to either alcohol (20% v/v) and water or only water immediately after the IVSA session. Next, economic demand for intravenous oxycodone was assessed while access to alcohol and/or water continued. Control rats self-administered sucrose followed by access to alcohol and/or water. Rats underwent extinction training and brains were processed for c-fos mRNA expression immediately following a cue-primed reinstatement test. While both sexes decreased oxycodone intake if they had access to alcohol, and decreased alcohol intake if they had access to oxycodone, female oxycodone+alcohol rats exhibited decreased demand elasticity for intravenous oxycodone and increased cue-primed reinstatement while male rats did not. Spontaneous withdrawal signs were correlated with oxycodone intake while alcohol intake was correlated with anxiety-like behavior. Alcohol consumption increased the number of basolateral and central amygdala neurons activated during sucrose and oxycodone reinstatement and the number of ventral and dorsal striatum neurons engaged by sucrose reinstatement. Nucleus accumbens shell dopamine 1 receptor containing neurons displayed activation patterns consistent with oxycodone reinstatement. Thus, alcohol alters the motivation to seek oxycodone in a sex-dependent manner and alters the neural circuitry engaged by cue-primed reinstatement of sucrose and oxycodone-seeking.

6.
Biomolecules ; 13(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37509091

RESUMO

Post-traumatic stress disorder (PTSD) is prevalent in women; however, preclinical research on PTSD has predominantly been conducted in male animals. Using a predator scent stress (PSS) rodent model of PTSD, we sought to determine if stress-susceptible female rats show altered monoamine concentrations in brain regions associated with PTSD: the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and dorsal (dHIPP) and ventral (vHIPP) hippocampus. Female Sprague-Dawley rats were exposed to a single, 10-min PSS exposure and tested for persistent anhedonia, fear, and anxiety-like behavior over four weeks. Rats were phenotyped as stress-Susceptible based on sucrose consumption in the sucrose preference task and time spent in the open arms of the elevated plus maze. Brain tissue was collected, and norepinephrine, dopamine, serotonin, and their metabolites were quantified using high-performance liquid chromatography. Stress-susceptibility in female rats was associated with increased dopamine and serotonin turnover in the mPFC. Susceptibility was also associated with elevated dopamine turnover in the NAc and increased norepinephrine in the vHIPP. Our findings suggest that stress-susceptibility after a single stress exposure is associated with long-term effects on monoamine function in female rats. These data suggest interventions that decrease monoamine turnover, such as MAOIs, may be effective in the treatment of PTSD in women.


Assuntos
Dopamina , Serotonina , Ratos , Feminino , Masculino , Animais , Dopamina/metabolismo , Ratos Sprague-Dawley , Serotonina/metabolismo , Odorantes , Encéfalo/metabolismo , Norepinefrina/metabolismo , Sacarose/metabolismo
7.
Front Pharmacol ; 14: 1132689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007027

RESUMO

Polysubstance use (PSU), involves the consumption of more than one drug within a period of time and is prevalent among cocaine users. Ceftriaxone, a beta-lactam antibiotic, reliably attenuates reinstatement of cocaine seeking in pre-clinical models by restoring glutamate homeostasis following cocaine self-administration but fails to do so when rats consume both cocaine and alcohol (cocaine + alcohol PSU). We previously found that cocaine + alcohol PSU rats reinstate cocaine seeking similarly to cocaine-only rats, but demonstrate differences in reinstatement-induced c-Fos expression throughout the reward system, including a lack of change upon ceftriaxone treatment. Here, we used this model to determine if previous findings were caused by tolerance or sensitization to the pharmacological effects of cocaine. Male rats underwent intravenous cocaine self-administration immediately followed by 6 h of home cage access to water or unsweetened alcohol for 12 days. Rats subsequently underwent 10 daily instrumental extinction sessions, during which time they were treated with either vehicle or ceftriaxone. Rats then received a non-contingent cocaine injection and were perfused for later immunohistochemical analysis of c-Fos expression in the reward neurocircuitry. c-Fos expression in the prelimbic cortex correlated with total alcohol intake in PSU rats. There were no effects of either ceftriaxone or PSU on c-Fos expression in the infralimbic cortex, nucleus accumbens core and shell, basolateral amygdala, or ventral tegmental area. These results support the idea that PSU and ceftriaxone alter the neurobiology underlying drug-seeking behavior in the absence of pharmacological tolerance or sensitization to cocaine.

8.
Int Rev Neurobiol ; 168: 177-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868629

RESUMO

Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Metanfetamina , Humanos , Sistema Nervoso Central , Glutamatos
9.
Int Rev Neurobiol ; 168: 221-264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868630

RESUMO

Stress and trauma exposure contribute to the development of psychiatric disorders such as post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) in a subset of people. A large body of preclinical work has found that the metabotropic glutamate (mGlu) family of G protein-coupled receptors regulate several behaviors that are part of the symptom clusters for both PTSD and MDD, including anhedonia, anxiety, and fear. Here, we review this literature, beginning with a summary of the wide variety of preclinical models used to assess these behaviors. We then summarize the involvement of Group I and II mGlu receptors in these behaviors. Bringing together this extensive literature reveals that mGlu5 signaling plays distinct roles in anhedonia, fear, and anxiety-like behavior. mGlu5 promotes susceptibility to stress-induced anhedonia and resilience to stress-induced anxiety-like behavior, while serving a fundamental role in the learning underlying fear conditioning. The medial prefrontal cortex, basolateral amygdala, nucleus accumbens, and ventral hippocampus are key regions where mGlu5, mGlu2, and mGlu3 regulate these behaviors. There is strong support that stress-induced anhedonia arises from decreased glutamate release and post-synaptic mGlu5 signaling. Conversely, decreasing mGlu5 signaling increases resilience to stress-induced anxiety-like behavior. Consistent with opposing roles for mGlu5 and mGlu2/3 in anhedonia, evidence suggests that increased glutamate transmission may be therapeutic for the extinction of fear learning. Thus, a large body of literature supports the targeting of pre- and post-synaptic glutamate signaling to ameliorate post-stress anhedonia, fear, and anxiety-like behavior.


Assuntos
Transtorno Depressivo Maior , Receptores de Glutamato Metabotrópico , Humanos , Anedonia , Ansiedade , Medo , Glutamatos
10.
Int Rev Neurobiol ; 168: xiii-xvi, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868637
11.
Psychopharmacology (Berl) ; 239(12): 3963-3973, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36329194

RESUMO

RATIONALE: There are no FDA-approved treatments to facilitate recovery from cocaine use disorder. Contingency management offers non-drug reinforcers to encourage abstinence and is effective at reducing drug seeking during treatment, but once discontinued, relapse rates increase. OBJECTIVES: We sought to establish a choice-based rodent model of voluntary abstinence (VA) from cocaine to test the ability of ceftriaxone, an antibiotic consistently shown to prevent relapse to cocaine seeking in rodents, to attenuate relapse after discontinuation of VA, and to investigate relapse-induced neuronal activation via c-Fos expression. METHODS: Male Sprague-Dawley rats self-administered sucrose pellets for 5 days and intravenous cocaine for 12 days. Rats then underwent 14 days of voluntary or forced abstinence. VA sessions entailed the opportunity to choose between sucrose and cocaine delivery in discrete trials (20 trials/day). Ceftriaxone (or vehicle) was administered during the last 7 days of abstinence. During a relapse test, only the cocaine-paired lever was available and presses on the lever delivered cocaine-paired cues. RESULTS: There were more presses on the sucrose lever during VA, but cocaine intake did not decline to zero. Ceftriaxone had no effect on cocaine intake during VA. Neither ceftriaxone nor VA reduced cocaine seeking during the relapse test, and cocaine intake during VA positively correlated with cocaine seeking during the test in vehicle-treated animals. Relapse-induced c-Fos expression was found to be greater in the ventral orbitofrontal cortex following VA. CONCLUSIONS: Sucrose availability leads to a decrease in, but not cessation of, cocaine seeking and a differential engagement of the circuitry underlying relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Ceftriaxona/farmacologia , Individualidade , Extinção Psicológica , Autoadministração , Recidiva , Sinais (Psicologia) , Sacarose/farmacologia
12.
Addict Neurosci ; 42022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277334

RESUMO

A large body of research supports the notion that regions of the rodent frontal cortex regulate reinstatement of cocaine seeking after cessation of intravenous cocaine self-administration. However, earlier studies identifying the roles of medial (mPFC) and orbital prefrontal cortices (OFC) in reinstatement relied on pharmacological inactivation methods, which indiscriminately inhibited cells within a target region. Here, we first review the anatomical borders and pathways of the rat mPFC and OFC. Next, we compare and contrast findings from more recent cocaine seeking and reinstatement studies that used chemogenetics, optogenetics, or advanced tracing to manipulate specific local cell types or input/output projections of the mPFC and OFC subregions. We found that these studies largely corroborated the roles for mPFC subregions as ascribed by pharmacological inactivation studies. Namely, the prelimbic cortex generally drives cocaine seeking behaviors while the infralimbic cortex is recruited to inhibit cocaine seeking by extinction training but may contribute to seeking after prolonged abstinence. While the OFC remains understudied, we suggest it should not be overlooked, and, as with prelimbic and infralimbic cortices, we identify specific pathways of interest for future studies.

13.
Addict Biol ; 27(5): e13206, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36001420

RESUMO

Chronic overeating is a core feature of diet-induced obesity. There is increasing evidence that in vulnerable individuals, such overeating could become compulsive, resembling an addictive disorder. The transition to compulsive substance use has been linked with changes at glutamatergic synapses in the nucleus accumbens. In this study, we investigated a potential link between such glutamatergic dysregulation and compulsive-like eating using a rat model of diet-induced obesity. A conditioned suppression task demonstrated that diet-induced obese rats display eating despite negative consequences, as their consumption was insensitive to an aversive cue. Moreover, nucleus accumbens expression of GluA1 and xCT proteins was upregulated in diet-induced obese animals. Lastly, both a computed 'addiction score' (based on performance across three criteria) and weight gain were positively correlated with changes in GluA1 and xCT expression in the nucleus accumbens. These data demonstrate that the propensity for diet-induced obesity is associated with compulsive-like eating of highly palatable food and is accompanied by 'addiction-like' glutamatergic dysregulation in the nucleus accumbens, thus providing neurobiological evidence of addiction-like pathology in this model of obesity.


Assuntos
Comportamento Aditivo , Comportamento Alimentar , Animais , Ingestão de Alimentos , Comportamento Alimentar/fisiologia , Hiperfagia , Obesidade , Ratos , Açúcares
14.
Int J Methods Psychiatr Res ; 31(3): e1912, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35684977

RESUMO

OBJECTIVE: While polysubstance use is highly prevalent among people who use drugs, the field lacks a reliable assessment that can detect detailed temporal patterns of polysubstance use. This study assessed the test-retest reliability of the newly developed Polysubstance Use-Temporal Patterns Section (PSU-TPS). METHODS: Participants who used cocaine plus alcohol and/or marijuana at least once in the past 30 days (n = 48) were interviewed at baseline and approximately 7 days later (retest) using the Substance Abuse Module and the PSU-TPS. Reliability of PSU-TPS measures of quantity, frequency, and duration of polysubstance use was examined using intra-class correlation coefficients (ICCs) and kappa tests. RESULTS: Excellent reliability was observed for frequencies of concurrent polysubstance use patterns in the past 30 days (ICC range: 0.90-0.94) and quantity of alcohol use (ICC = 0.83), and fair to good reliability was observed for duration of substance use (ICC range: 0.52-0.73). CONCLUSION: Detailed information regarding cocaine, alcohol, and marijuana polysubstance use in the past 30 days can be reliably measured with the PSU-TPS. Data on the order and timing of polysubstance use at the hourly level will improve our understanding of the implications of sequential and simultaneous use patterns, which can help inform treatment and prevention efforts.


Assuntos
Cocaína , Fumar Maconha , Transtornos Relacionados ao Uso de Substâncias , Consumo de Bebidas Alcoólicas , Humanos , Reprodutibilidade dos Testes , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
15.
Neurosci Biobehav Rev ; 135: 104584, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189163

RESUMO

Women are more sensitive to cocaine craving elicited by stimuli associated with relapse. Ovarian hormones modulate cocaine craving and may therefore function as risk factors or therapeutic agents for the development and treatment of cocaine use disorder, respectively. We review herein the neuropharmacological effects of the steroid hormones 17ß-estradiol, progesterone, and allopregnanolone, a progesterone metabolite, in relation to their effects on cocaine-induced locomotion, behavioural sensitization, conditioned place preference, and reinstatement of cocaine seeking. In general, the literature suggests that female rats are more sensitive to these cocaine-induced behaviours than males and that 17ß-estradiol facilitates the expression of these sex differences. Alternatively, in females, exogenous progesterone attenuates cocaine conditioned place preference, reinstatement, and possibly behavioural sensitization, either on its own or after conversion to allopregnanolone. These opposing effects of 17ß-estradiol and progesterone/allopregnanolone involve endocannabinoid, γ-aminobutyric acid, dopamine, and glutamate transmission in the medial prefrontal cortex and striatum. We conclude that 17ß-estradiol may be a risk factor for various components of cocaine use disorder in women, whereas progesterone and allopregnanolone may be potential treatment options.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Estradiol , Estrogênios/farmacologia , Feminino , Humanos , Masculino , Progesterona/farmacologia , Ratos
16.
Int J Mol Sci ; 22(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204090

RESUMO

The intravenous cocaine self-administration model is widely used to characterize the neurobiology of cocaine seeking. When studies are aimed at understanding relapse to cocaine-seeking, a post-cocaine abstinence period is imposed, followed by "relapse" tests to assess the ability of drug-related stimuli ("primes") to evoke the resumption of the instrumental response previously made to obtain cocaine. Here, we review the literature on the impact of post-cocaine abstinence procedures on neurobiology, finding that the prelimbic and infralimbic regions of the prefrontal cortex are recruited by extinction training, and are not part of the relapse circuitry when extinction training does not occur. Pairing cocaine infusions with discrete cues recruits the involvement of the NA, which together with the dorsal striatum, is a key part of the relapse circuit regardless of abstinence procedures. Differences in molecular adaptations in the NA core include increased expression of GluN1 and glutamate receptor signaling partners after extinction training. AMPA receptors and glutamate transporters are similarly affected by abstinence and extinction. Glutamate receptor antagonists show efficacy at reducing relapse following extinction and abstinence, with a modest increase in efficacy of compounds that restore glutamate homeostasis after extinction training. Imaging studies in humans reveal cocaine-induced adaptations that are similar to those produced after extinction training. Thus, while instrumental extinction training does not have face validity, its use does not produce adaptations distinct from human cocaine users.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/efeitos adversos , Extinção Psicológica/fisiologia , Animais , Humanos , Rede Nervosa/patologia , Recidiva
17.
Brain Struct Funct ; 226(7): 2279-2293, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175993

RESUMO

Post-traumatic stress disorder (PTSD) develops in a subset of individuals exposed to a trauma with core features being increased anxiety and impaired fear extinction. To model the heterogeneity of PTSD behavioral responses, we exposed male Sprague-Dawley rats to predator scent stress once for 10 min and then assessed anxiety-like behavior 7 days later using the elevated plus maze and acoustic startle response. Rats displaying anxiety-like behavior in both tasks were classified as stress Susceptible, and rats exhibiting behavior no different from un-exposed Controls were classified as stress Resilient. In Resilient rats, we previously found increased mRNA expression of mGlu5 in the amygdala and prefrontal cortex (PFC) and CB1 in the amygdala. Here, we performed fluorescent in situ hybridization (FISH) to determine the subregion and cell-type-specific expression of these genes in Resilient rats 3 weeks after TMT exposure. Resilient rats displayed increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and the infralimbic and prelimbic regions of the PFC and increased BLA CB1 mRNA. These increases were limited to glutamatergic cells. To test the necessity of mGlu5 for attenuating TMT-conditioned contextual fear 3 weeks after TMT conditioning, intra-BLA infusions of the mGlu5 negative allosteric modulator MTEP were administered prior to context re-exposure. In TMT-exposed Resilient rats, but not Controls, MTEP increased freezing on the day of administration, which extinguished over two additional un-drugged sessions. These results suggest that increased mGlu5 expression in BLA glutamate neurons contributes to the behavioral flexibility observed in stress-Resilient animals by facilitating a capacity for extinguishing contextual fear associations.


Assuntos
Neurônios , Animais , Complexo Nuclear Basolateral da Amígdala , Extinção Psicológica , Medo , Ácido Glutâmico , Hibridização in Situ Fluorescente , Masculino , Odorantes , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto , Transtornos de Estresse Pós-Traumáticos
18.
J Pharmacol Exp Ther ; 378(2): 51-59, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33986035

RESUMO

Cocaine use disorder currently lacks Food and Drug Administration-approved treatments. In rodents, the glutamate transporter-1 (GLT-1) is downregulated in the nucleus accumbens after cocaine self-administration, and increasing the expression and function of GLT-1 reduces the reinstatement of cocaine seeking. The ß-lactam antibiotic ceftriaxone upregulates GLT-1 and attenuates cue- and cocaine-induced cocaine seeking without affecting motivation for natural rewards. Although ceftriaxone shows promise for treating cocaine use disorder, it possesses characteristics that limit successful translation from bench to bedside, including poor brain penetration, a lack of oral bioavailability, and a risk of bacterial resistance when used chronically. Thus, we aimed to develop novel molecules that retained the GLT-1-enhancing effects of ceftriaxone but displayed superior drug-like properties. Here, we describe a new monocyclic ß-lactam, MC-100093, as a potent upregulator of GLT-1 that is orally bioavailable and devoid of antimicrobial properties. MC-100093 was synthesized and tested in vitro and in vivo to determine physiochemical, pharmacokinetic, and pharmacodynamic properties. Next, adult male rats underwent cocaine self-administration and extinction training. During extinction training, rats received one of four doses of MC-100093 for 6-8 days prior to a single cue-primed reinstatement test. Separate cohorts of rats were used to assess nucleus accumbens GLT-1 expression and MC-100093 effects on sucrose self-administration. We found that 50 mg/kg MC-100093 attenuated cue-primed reinstatement of cocaine seeking while upregulating GLT-1 expression in the nucleus accumbens core. This dose did not produce sedation, nor did it decrease sucrose consumption or body weight. Thus, MC-100093 represents a potential treatment to reduce cocaine relapse. SIGNIFICANCE STATEMENT: Increasing GLT-1 activity reliably reduces drug-seeking across classes of drugs; however, existing GLT1-enhancers have side effects and lack oral bioavailability. To address this issue, novel GLT-1 enhancers were synthesized, and the compound with the most favorable pharmacokinetic and pharmacodynamic properties, MC-100093, was selected for further testing. MC-100093 attenuated cued cocaine seeking without reducing food seeking or locomotion and upregulated GLT-1 expression in the nucleus accumbens.


Assuntos
beta-Lactamas , Animais , Cocaína , Masculino , Ratos
19.
Alcohol ; 92: 1-9, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465464

RESUMO

Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of alcohol (ethanol) in mice. Previous reports from our laboratory show that CIE increases extracellular glutamate in the nucleus accumbens (NAc) and that manipulating accumbal glutamate concentrations will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. A number of studies have shown that ceftriaxone increases GLT-1 expression, the major glutamate transporter, and that treatment with this antibiotic reduces ethanol drinking. The present studies examined the effects of ceftriaxone on ethanol drinking and GLT-1 in a mouse model of ethanol dependence and relapse drinking. The results show that ceftriaxone did not influence drinking at any dose in either ethanol-dependent or non-dependent mice. Further, ceftriaxone did not increase GLT-1 expression in the accumbens core or shell, with the exception of the ethanol-dependent mice receiving the highest dose of ceftriaxone. Interestingly, ethanol-dependent mice treated with only vehicle displayed reduced expression of GLT-1 in the accumbens shell and of the presynaptic mGlu2 receptor in the accumbens core. The reduced expression of the major glutamate transporter (GLT-1), as well as a receptor that regulates glutamate release (mGlu2), may help explain, at least in part, increased glutamatergic transmission in this model of ethanol dependence and relapse drinking.


Assuntos
Consumo de Bebidas Alcoólicas , Animais , Ceftriaxona/farmacologia , Etanol , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Recidiva
20.
Addict Biol ; 26(2): e12928, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32558119

RESUMO

Ceftriaxone is an antibiotic that reliably attenuates the reinstatement of cocaine seeking after extinction while preventing the nucleus accumbens (NA) core glutamate efflux that drives reinstatement. However, when rats undergo abstinence without extinction, ceftriaxone attenuates context-primed cocaine seeking but NA core glutamate efflux still increases. Here, we sought to determine if the same would occur when cocaine seeking is prompted by both context and discrete cues (cue-induced seeking) after cocaine abstinence. Male rats self-administered intravenous cocaine accompanied by drug-associated cues (light + tone) for 2 h/day for 14 days. Rats then experienced abstinence with daily handling but no extinction training for 2 weeks. Ceftriaxone (200 mg/kg IP) or vehicle was administered during the last 6 days of abstinence. During a cue-induced cocaine seeking test, microdialysis procedures were conducted. Rats were perfused at the end of the test for later Fos analysis. A separate cohort of rats was infused with the retrograde tracer cholera toxin B in the NA core and underwent the same self-administration and relapse procedures. Ceftriaxone increased baseline glutamate and attenuated both cue-induced cocaine seeking and NA core glutamate efflux during this test. Ceftriaxone reduced Fos expression in regions sending projections to the NA core (prefrontal cortex, basolateral amygdala, ventral tegmental area) and specifically reduced Fos in prelimbic cortex and not infralimbic cortex neurons projecting to the NA core. Thus, when cocaine seeking is induced by drug-associated cues, ceftriaxone is able to attenuate relapse by preventing NA core glutamate efflux, likely through reducing activity in prelimbic NA core-projecting neurons.


Assuntos
Ceftriaxona/farmacologia , Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Genes fos/efeitos dos fármacos , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...