Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 52016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27083044

RESUMO

Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects.


Assuntos
Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Animais , Drosophila/anatomia & histologia , Memória , Corpos Pedunculados/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/citologia , Percepção Olfatória , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Percepção Visual
2.
Nat Commun ; 7: 10678, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26893070

RESUMO

Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food.


Assuntos
Drosophila/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Alimentar , Boca/fisiologia , Paladar
3.
Elife ; 3: e02395, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25139953

RESUMO

In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Percepção Olfatória/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Cor , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/citologia , Drosophila melanogaster/citologia , Eletrochoque , Feminino , Aprendizagem/fisiologia , Masculino , Corpos Pedunculados/citologia , Punição , Recompensa , Olfato/fisiologia
4.
J Neurosci ; 33(12): 5340-5, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23516298

RESUMO

In insects, many complex behaviors, including olfactory memory, are controlled by a paired brain structure, the so-called mushroom bodies (MB). In Drosophila, the development, neuroanatomy, and function of intrinsic neurons of the MB, the Kenyon cells, have been well characterized. Until now, several potential neurotransmitters or neuromodulators of Kenyon cells have been anatomically identified. However, whether these neuroactive substances of the Kenyon cells are functional has not been clarified yet. Here we show that a neuropeptide precursor gene encoding four types of short neuropeptide F (sNPF) is required in the Kenyon cells for appetitive olfactory memory. We found that activation of Kenyon cells by expressing a thermosensitive cation channel (dTrpA1) leads to a decrease in sNPF immunoreactivity in the MB lobes. Targeted expression of RNA interference against the sNPF precursor in Kenyon cells results in a highly significant knockdown of sNPF levels. This knockdown of sNPF in the Kenyon cells impairs sugar-rewarded olfactory memory. This impairment is not due to a defect in the reflexive sugar preference or odor response. Consistently, knockdown of sNPF receptors outside the MB causes deficits in appetitive memory. Altogether, these results suggest that sNPF is a functional neuromodulator released by Kenyon cells.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Memória/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Neuropeptídeos/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Apetite/fisiologia , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Masculino , Neuropeptídeos/genética , Neurotransmissores/genética , Neurotransmissores/fisiologia , Odorantes
5.
Curr Biol ; 23(6): 507-14, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23477724

RESUMO

Motivation controls behavior [1]. A variety of food-related behaviors undergo motivational modulation by hunger, satiety, and other states [2-4]. Here we searched for critical satiation factors modulating approach to an odor associated with sugar reward in Drosophila melanogaster. We selectively manipulated different parameters associated with feeding, such as internal glucose levels, and determined which are required for suppressing conditioned odor approach. Surprisingly, glucose levels in the hemolymph, nutritional value, sweetness of the food, and ingested volume (above a minimal threshold) did not influence behavior suppression. Instead, we found that the total osmolarity of ingested food is a critical satiation factor. In parallel, we found that conditioned approach is transiently suppressed by artificial stimulation of adipokinetic hormone (AKH) expressing corpora cardiaca cells, which causes elevation of hemolymph carbohydrate and lipid concentrations [5, 6]. This result implies that a rise in hemolymph osmolarity, without the experience of feeding, is sufficient to satiate conditioned odor approach. AKH stimulation did not affect innate sugar preference, suggesting that multiple satiation signals control different sets of appetitive behaviors.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Condicionamento Clássico , Comportamento Alimentar , Feminino , Glucose/fisiologia , Hormônios de Inseto/metabolismo , Masculino , Motivação , Sistemas Neurossecretores/metabolismo , Valor Nutritivo , Percepção Olfatória , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Recompensa , Percepção Gustatória
6.
J Neurosci ; 31(9): 3453-8, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21368057

RESUMO

In Drosophila, aversive associative memory of an odor consists of heterogeneous components with different stabilities. Here we report that Bruchpilot (Brp), a ubiquitous presynaptic active zone protein, is required for olfactory memory. Brp was shown before to facilitate efficient vesicle release, particularly at low stimulation frequencies. Transgenic knockdown in the Kenyon cells of the mushroom body, the second-order olfactory interneurons, revealed that Brp is required for olfactory memory. We further demonstrate that Brp in the Kenyon cells preferentially functions for anesthesia-resistant memory. Another presynaptic protein, Synapsin, was shown previously to be required selectively for the labile anesthesia-sensitive memory, which is less affected in brp knockdown. Thus, consolidated and labile components of aversive olfactory memory can be dissociated by the function of different presynaptic proteins.


Assuntos
Anestesia , Proteínas de Drosophila/fisiologia , Memória/fisiologia , Odorantes , Olfato/fisiologia , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/fisiologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Terminações Pré-Sinápticas/fisiologia , Sinapses/genética
7.
Curr Biol ; 20(21): 1938-44, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20951043

RESUMO

How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.


Assuntos
Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Corpos Pedunculados/ultraestrutura , Neurônios/fisiologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Olfato , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
8.
Learn Mem ; 17(2): 76-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20154352

RESUMO

Odor-shock memory in Drosophila melanogaster consists of heterogeneous components each with different dynamics. We report that a null mutant for the evolutionarily conserved synaptic protein Synapsin entails a memory deficit selectively in early memory, leaving later memory as well as sensory motor function unaffected. Notably, a consolidated memory component remaining after cold-anesthesia is not impaired, suggesting that only anesthesia-sensitive memory [ASM] depends on Synapsin. The lack of Synapsin does not further impair the memory deficit of mutants for the rutabaga gene encoding the type I adenylyl cyclase. This suggests that cAMP signaling, through a Synapsin-dependent mechanism, may underlie the formation of a labile memory component.


Assuntos
Memória/fisiologia , Sinapsinas/fisiologia , Anestesia , Animais , Animais Geneticamente Modificados , Temperatura Baixa , Drosophila/genética , Drosophila/fisiologia , Retroalimentação Sensorial/fisiologia , Habituação Psicofisiológica , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Olfato/fisiologia , Sinapsinas/genética
9.
J Comp Neurol ; 498(2): 194-203, 2006 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-16856137

RESUMO

The GAL4/UAS gene expression system in Drosophila has been crucial in revealing the behavioral significance of neural circuits. Transgene products that block neurotransmitter release and induce cell death have been proved to inhibit neural function powerfully. Here we compare the action of the five effector genes shibire(ts1), Tetanus toxin light chain (TNT), reaper, Diphtheria toxin A-chain (DTA), and inwardly rectifying potassium channel (Kir2.1) and show differences in their efficiency depending on the target cells and the timing of induction. Specifically, effectors blocking neuronal transmission or excitability led to adult-induced paralysis more efficiently than those causing cell ablation. We contrasted these differential potencies in adult to their actions during development. Furthermore, we induced TNT expression in the adult mushroom bodies. In contrast to the successful impairment in short-term olfactory memory by shibire(ts1), adult TNT expression in the same set of cells did not lead to any obvious impairment. Altogether, the efficiency of effector genes depends on properties of the targeted neurons. Thus, we conclude that the selection of the appropriate effector gene is critical for evaluating the function of neural circuits.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Animais , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Feminino , Masculino , Corpos Pedunculados/citologia , Corpos Pedunculados/metabolismo , Paralisia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sinapses/metabolismo , Temperatura , Toxina Tetânica/genética , Toxina Tetânica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA