Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571791

RESUMO

Maternally-inherited sex ratio distorting microbes (SRDMs) are common among arthropod species. Typically, these microbes cause female-biased sex ratios in host broods, either by; killing male offspring, feminising male offspring, or inducing parthenogenesis. As a result, infected populations can experience drastic ecological and evolutionary change. The mechanism by which SRDMs operate is likely to alter their impact on host evolutionary ecology; despite this, the current literature is heavily biased towards a single mechanism of sex ratio distortion, male-killing. Furthermore, amidst the growing concerns surrounding the loss of arthropod diversity, research into the impact of SRDMs on the viability of arthropod populations is generally lacking. In this study, using a theoretical approach, we model the epidemiology of an understudied mechanism of microbially-induced sex ratio distortion-feminisation-to ask an understudied question-how do SRDMs impact extinction risk in a changing environment? We constructed an individual-based model and measured host population extinction risk under various environmental and epidemiological scenarios. We also used our model to identify the precise mechanism modulating extinction. We find that the presence of feminisers increases host population extinction risk, an effect that is exacerbated in highly variable environments. We also identified transmission rate as the dominant epidemiological trait responsible for driving extinction. Finally, our model shows that sex ratio skew is the mechanism driving extinction. We highlight feminisers and, more broadly, SRDMs as important determinants of the resilience of arthropod populations to environmental change.

2.
Ecol Evol ; 12(10): e9402, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36248670

RESUMO

Understanding the factors that facilitate or constrain establishment of populations in novel environments is crucial for conservation biology and the study of adaptive radiation. Important questions include: (1) Does the timing of colonization relative to stochastic events, such as climatic perturbations, impact the probability of successful establishment? (2) To what extent does community context (e.g., the presence of competitors) change the probability of establishment? (3) How do sources of intrapopulation variance, such as sex differences, affect success at an individual level during the process of establishment? Answers to these questions are rarely pursued in a field-experimental context or on the same time scales (months to years) as the processes of colonization and establishment. We introduced slender anole lizards (Anolis apletophallus) to eight islands in the Panama Canal and tracked them over multiple generations to investigate the factors that mediate establishment success. All islands were warmer than the mainland (ancestral) environment, and some islands had a native competitor. We transplanted half of these populations only 4 months before the onset of a severe regional drought and the other half 2 years (two generations) before the drought. We found that successful establishment depended on both the intensity of interspecific competition and the timing of colonization relative to the drought. The islands that were colonized shortly before the drought went functionally extinct by the second generation, and regardless of time before the drought, the populations on islands with interspecific competition declined continuously over the study period. Furthermore, the effect of the competitor interacted with sex, with males suffering, and females benefitting, from the presence of a native competitor. Our results reveal that community context and the timing of colonization relative to climactic events can combine to determine establishment success and that these factors can generate opposite effects on males and females.

3.
JID Innov ; 2(1): 100062, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993502

RESUMO

Atopic eczema is a common and complex disease. Missing genetic hereditability and increasing prevalence in industrializing nations point toward an environmental driver. We investigated the temporal association of weather and pollution parameters with eczema severity. This cross-sectional clinical study was performed between May 2018 and March 2020 and is part of the Tower Hamlets Eczema Assessment. All participants had a diagnosis of eczema, lived in East London, were of Bangladeshi ethnicity, and were aged <31 years. The primary outcome was the probability of having an Eczema Area and Severity Index score > 10 after previous ambient exposure to commonly studied meteorological variables and pollutants. There were 430 participants in the groups with Eczema Area and Severity Index ≤ 10 and 149 in those with Eczema Area and Severity Index > 10. Using logistic generalized additive models and a model selection process, we found that tropospheric ozone averaged over the preceding 270 days was strongly associated with eczema severity alongside the exposure to fine particles with diameters of 2.5 µm or less (fine particulate matter) averaged over the preceding 120 days. In our models and analyses, fine particulate matter appeared to largely act in a supporting role to ozone. We show that long-term exposure to ground-level ozone at high levels has the strongest association with eczema severity.

4.
Elife ; 102021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33685582

RESUMO

During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Elétrons , Ferredoxina-NADP Redutase/genética , Fotossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Fotoperíodo
5.
Ecol Lett ; 22(10): 1629-1637, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31353816

RESUMO

The effect of sexual selection on species persistence remains unclear. The cost of bearing ornaments or armaments might increase extinction risk, but sexual selection can also enhance the spread of beneficial alleles and increase the removal of deleterious alleles, potentially reducing extinction risk. Here we investigate the effect of sexual selection on species persistence in a community of 34 species of dung beetles across a gradient of environmental disturbance ranging from old growth forest to oil palm plantation. Horns are sexually selected traits used in contests between males, and we find that both horn presence and relative size are strongly positively associated with species persistence and abundance in altered habitats. Testes mass, an indicator of post-copulatory selection, is, however, negatively linked with the abundance of species within the most disturbed habitats. This study represents the first evidence from a field system of a population-level benefit from pre-copulatory sexual selection.


Assuntos
Besouros/anatomia & histologia , Comportamento Sexual Animal , Animais , Bornéu , Besouros/fisiologia , Ecossistema , Masculino , Fenótipo
6.
Ecol Lett ; 22(9): 1428-1438, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243848

RESUMO

There exist a number of key macroecological patterns whose ubiquity suggests that the spatio-temporal structure of ecological communities is governed by some universal mechanisms. The nature of these mechanisms, however, remains poorly understood. Here, we probe spatio-temporal patterns in species richness and community composition using a simple metacommunity assembly model. Despite making no a priori assumptions regarding biotic spatial structure or the distribution of biomass across species, model metacommunities self-organise to reproduce well-documented patterns including characteristic species abundance distributions, range size distributions and species area relations. Also in agreement with observations, species richness in our model attains an equilibrium despite continuous species turnover. Crucially, it is in the neighbourhood of the equilibrium that we observe the emergence of these key macroecological patterns. Biodiversity equilibria in models occur due to the onset of ecological structural instability, a population-dynamical mechanism. This strongly suggests a causal link between local community processes and macroecological phenomena.


Assuntos
Biodiversidade , Modelos Biológicos , Biomassa , Ecologia , Ecossistema , Análise Espaço-Temporal
7.
Ecol Evol ; 9(8): 4403-4420, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031915

RESUMO

The impact of climate change on strongly age-structured populations is poorly understood, despite the central role of temperature in determining developmental rates in ectotherms. Here we examine the effect of warming and its interactions with resource availability on the population dynamics of the pyralid moth Plodia interpunctella, populations of which normally show generation cycles, a consequence of strong and asymmetric age-related competition. Warming by 3°C above the standard culture temperature led to substantial changes in population density, age structure, and population dynamics. Adult populations were some 50% larger in warmed populations, probably because the reduced fecundity associated with warming leads to reduced larval competition, allowing more larvae to develop to adulthood. Warming also interacted with resource availability to alter population dynamics, with the generation cycles typical of this species breaking down in the 30° populations when standard laboratory diet was provided but not when a reduced nutrient poor diet was used. Warming by 6° led to either rapid extinction or the persistence of populations at low densities for the duration of the experiment. We conclude that even moderate warming can have considerable effects on population structure and dynamics, potentially leading to complete changes in dynamics in some cases. These results are particularly relevant given the large number of economically important species that exhibit generation cycling, in many cases arising from similar mechanisms to those operating in P. interpunctella.

8.
Biol Lett ; 14(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135117

RESUMO

All Lepidoptera produce two sperm types: normal, nucleated 'eupyrene' sperm and anucleate 'apyrene' sperm. One hypothesis for the evolution of apyrene sperm suggests that they act to reduce female remating rate. Apyrene sperm require less resources to produce than do eupyrene sperm, and could delay remating by females by acting as a 'cheap filler', packing the spermatheca and thereby reducing receptivity. This would reduce the risk of sperm competition, giving a potential adaptive advantage to the male producing these sperm. This leads to the prediction that the probability of a female remating should correlate with the number of stored apyrene sperm, which has previously been supported by experiments using the green-veined white butterfly, Pieris napi We repeated this experiment using the Indian meal moth, Plodia interpunctella We find that in this species, eupyrene, not apyrene sperm number is the best predictor of female remating probability, indicating that the 'cheap filler' hypothesis for the function of apyrene sperm is not well supported in Pl. interpunctella.


Assuntos
Mariposas/fisiologia , Comportamento Sexual Animal/fisiologia , Espermatozoides/citologia , Animais , Feminino , Masculino
9.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669902

RESUMO

Strong sexual selection has been reported to both enhance and hinder the adaptive capacity and persistence of populations when exposed to novel environments. Consequently, how sexual selection influences population adaption and persistence under stress remains widely debated. Here, we present two empirical investigations of the fitness consequences of sexual selection on populations of the Indian meal moth, Plodia interpunctella, exposed to stable or gradually increasing temperatures. When faced with increasing temperatures, strong sexual selection was associated with both increased fecundity and offspring survival compared with populations experiencing weak sexual selection, suggesting sexual selection acts to drive adaptive evolution by favouring beneficial alleles. Strong sexual selection did not, however, delay extinction when the temperature became excessively high. By manipulating individuals' mating opportunities during fitness assays, we were able to assess the effect of multiple mating independently from the effect of population-level sexual selection, and found that polyandry has a positive effect on both fecundity and offspring survival under increasing temperatures in those populations evolving with weak sexual selection. Within stable temperatures, there were some benefits from strong sexual selection but these were not consistent across the entire experiment, possibly reflecting changing costs and benefits of sexual selection under stabilizing and directional selection. These results indicate that sexual selection can provide a buffer against climate change and increase adaptation rates within a continuously changing environment. These positive effects of sexual selection may, however, be too small to protect populations and delay extinction when environmental changes are relatively rapid.


Assuntos
Adaptação Biológica , Extinção Biológica , Aptidão Genética , Temperatura Alta/efeitos adversos , Preferência de Acasalamento Animal , Mariposas/fisiologia , Animais , Feminino , Masculino , Mariposas/genética
10.
Proc Biol Sci ; 285(1875)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29563271

RESUMO

Establishing the origin and function of unusual traits in fossil taxa provides a crucial tool in understanding macroevolutionary patterns over long periods of time. Ceratopsian dinosaurs are known for their exaggerated and often elaborate horns and frills, which vary considerably between species. Many explanations have been proposed for the origin and evolution of these 'ornamental' traits, from predator defence to socio-sexual dominance signalling and, more recently, species recognition. A key prediction of the species recognition hypothesis is that two or more species possessing divergent ornamental traits should have been at least partially sympatric. For the first time to our knowledge, we test this hypothesis in ceratopsians by conducting a comparison of the morphological characters of 46 species. A total of 350 ceratopsian cladistic characters were categorized as either 'internal', 'display' (i.e. ornamental) or 'non display'. Patterns of diversity of these characters were evaluated across 1035 unique species pairs. Display characters were found to diverge rapidly overall, but sympatric species were not found to differ significantly in their ornamental disparity from non-sympatric species, regardless of phylogenetic distance. The prediction of the species recognition hypothesis, and thus the idea that ornamentation evolved as a species recognition mechanism, has no statistical support among known ceratopsians.


Assuntos
Evolução Biológica , Dinossauros/classificação , Dinossauros/genética , Simpatria , Animais , Biodiversidade , Dinossauros/anatomia & histologia , Fósseis , Cornos/anatomia & histologia , Modelos Estatísticos , Fenótipo , Filogenia , Análise de Regressão , Crânio/anatomia & histologia
11.
Ecol Evol ; 7(22): 9699-9710, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29188001

RESUMO

Environmental temperature has important effects on the physiology and life history of ectothermic animals, including investment in the immune system and the infectious capacity of pathogens. Numerous studies have examined individual components of these complex systems, but little is known about how they integrate when animals are exposed to different temperatures. Here, we use the Indian meal moth (Plodia interpunctella) to understand how immune investment and disease resistance react and potentially trade-off with other life-history traits. We recorded life-history (development time, survival, fecundity, and body size) and immunity (hemocyte counts, phenoloxidase activity) measures and tested resistance to bacterial (E. coli) and viral (Plodia interpunctella granulosis virus) infection at five temperatures (20-30°C). While development time, lifespan, and size decreased with temperature as expected, moths exhibited different reproductive strategies in response to small changes in temperature. At cooler temperatures, oviposition rates were low but tended to increase toward the end of life, whereas warmer temperatures promoted initially high oviposition rates that rapidly declined after the first few days of adult life. Although warmer temperatures were associated with strong investment in early reproduction, there was no evidence of an associated trade-off with immune investment. Phenoloxidase activity increased most at cooler temperatures before plateauing, while hemocyte counts increased linearly with temperature. Resistance to bacterial challenge displayed a complex pattern, whereas survival after a viral challenge increased with rearing temperature. These results demonstrate that different immune system components and different pathogens can respond in distinct ways to changes in temperature. Overall, these data highlight the scope for significant changes in immunity, disease resistance, and host-parasite population dynamics to arise from small, biologically relevant changes to environmental temperature. In light of global warming, understanding these complex interactions is vital for predicting the potential impact of insect disease vectors and crop pests on public health and food security.

12.
Sci Rep ; 7(1): 16733, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196728

RESUMO

When male animals engage in intrasexual contests then any alternative tactics they use can be associated with dimorphisms in the expression of weapons. Some species have recently been found to exhibit trimorphism in their weaponry, suggesting that the processes leading to their evolution and maintenance of these polymorphisms can be more complex than previously thought. Here, we describe the extraordinary diversity of polymorphism within the genus Odontolabis: there are dimorphic species (O. siva and O. platynota), trimorphic species (O. cuvera, as previously described, and O. sommeri s.stricto) and, uniquely, tetramorphic species, with males of O. sommeri lowei and O. brookeana showing four clearly differentiated male morphs: small "Gammas", "Alphas" which express large, long mandibles, "Betas" which have long mandibles with different morphology and "Boltcutters", with short, wide mandibles. Such polymorphisms are usually thought of as being maintained as a status-dependent conditional strategy, but we found only one size threshold: in most cases males develop into Gamma males below a certain size but there is no relationship between morph and body size amongst the larger, 'weaponised' morphs. We suggest that the complex polymorphisms in these animals are probably maintained by a combination of a conditional strategy and a genetic polymorphism.


Assuntos
Besouros/crescimento & desenvolvimento , Mandíbula/anatomia & histologia , Polimorfismo Genético , Animais , Tamanho Corporal , Besouros/anatomia & histologia , Besouros/classificação , Besouros/genética , Heterogeneidade Genética , Cabeça/anatomia & histologia , Cabeça/crescimento & desenvolvimento , Masculino , Mandíbula/crescimento & desenvolvimento , Caracteres Sexuais , Tórax/anatomia & histologia , Tórax/crescimento & desenvolvimento
13.
Proc Biol Sci ; 284(1868)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29187627

RESUMO

Humans commonly harvest animals based on their expression of secondary sexual traits such as horns or antlers. This selective harvest is thought to have little effect on harvested populations because offtake rates are low and usually only the males are targeted. These arguments do not, however, take the relationship between secondary sexual trait expression and animal condition into account: there is increasing evidence that in many cases the degree of expression of such traits is correlated with an animal's overall well-being, which is partly determined by their genetic match to the environment. Using an individual-based model, we find that when there is directional environmental change, selective harvest of males with the largest secondary sexual traits can lead to extinction in otherwise resilient populations. When harvest is not selective, the males best suited to a new environment gain the majority of matings and beneficial alleles spread rapidly. When these best-adapted males are removed, however, their beneficial alleles are lost, leading to extinction. Given the current changes happening globally, these results suggest that trophy hunting and other cases of selective harvest (such as certain types of insect collection) should be managed with extreme care whenever populations are faced with changing conditions.


Assuntos
Evolução Biológica , Extinção Biológica , Fenótipo , Animais , Preferência de Acasalamento Animal , Modelos Biológicos , Reprodução
14.
J Anim Ecol ; 86(1): 117-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27861841

RESUMO

Previous theoretical models of the effect of sexual selection on average individual fitness in a population have mostly predicted that sexually selected populations should adapt faster and clear deleterious mutations more quickly than populations where sexual selection is not operating. While some laboratory studies have supported these predictions, others have not and studies of field systems have tended to find negative effects of sexual selection, or no effect. The negative effects of sexual selection found in field and other studies are usually ascribed to the costs associated with strong sexual selection acting on the population. Here, using an individual-based model that allows feedback between demographic and evolutionary processes, we find that sexual selection can lead to both increases and decreases in population-level fitness measures such as extinction probability and adaptation rate. Whether fitness increases or decreases depends on a variety of environmental and demographic factors including the nature of environmental change, the carrying capacity of the environment, the average fecundity of the population in question and the strength of condition dependence. In many cases, our model predicts that sexual selection leads to higher extinction probability in small populations because of an increased risk of demographic stochasticity, but lower extinction probability in larger populations because of faster adaptation rates. This is consistent with field studies that have mostly focussed on very small populations such as recently introduced birds, and tend to find negative effects, and also with laboratory studies that tend to use larger populations and have tended to find positive effects. These findings go at least some way towards an understanding of the apparent contradictions between theoretical predictions, laboratory studies and field data.


Assuntos
Adaptação Biológica , Extinção Biológica , Preferência de Acasalamento Animal , Animais , Evolução Biológica , Aptidão Genética , Modelos Genéticos , Dinâmica Populacional
15.
PLoS One ; 11(12): e0168869, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28033396

RESUMO

It is increasingly clear that parental environment can play an important role in determining offspring phenotype. These "transgenerational effects" have been linked to many different components of the environment, including toxin exposure, infection with pathogens and parasites, temperature and food quality. In this study, we focus on the latter, asking how variation in the quantity and quality of nutrition affects future generations. Previous studies have shown that artificial diets are a useful tool to examine the within-generation effects of variation in macronutrient content on life history traits, and could therefore be applied to investigations of the transgenerational effects of parental diet. Synthetic diets varying in total macronutrient content and protein: carbohydrate ratios were used to examine both within- and trans-generational effects on life history traits in a generalist stored product pest, the Indian meal moth Plodia interpunctella. The macronutrient composition of the diet was important for shaping within-generation life history traits, including pupal weight, adult weight, and phenoloxidase activity, and had indirect effects via maternal weight on fecundity. Despite these clear within-generation effects on the biology of P. interpunctella, diet composition had no transgenerational effects on the life history traits of offspring. P. interpunctella mothers were able to maintain their offspring quality, possibly at the expense of their own somatic condition, despite high variation in dietary macronutrient composition. This has important implications for the plastic biology of this successful generalist pest.


Assuntos
Dieta , Estágios do Ciclo de Vida , Mariposas/crescimento & desenvolvimento , Animais , Peso Corporal/efeitos dos fármacos , Celulose/farmacologia , Efeito de Coortes , Digestão , Meio Ambiente , Estágios do Ciclo de Vida/efeitos dos fármacos , Mariposas/imunologia , Mariposas/metabolismo , Mariposas/fisiologia , Fenótipo , Pupa/anatomia & histologia , Pupa/efeitos dos fármacos
16.
New Phytol ; 210(4): 1195-206, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26875784

RESUMO

Angiosperm genome sizes (GS) range c. 2400-fold, and as nucleic acids are amongst the most phosphorus- (P) and nitrogen (N)-demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant GS. We analysed the impact of different nutrient regimes on above-ground biomass of angiosperm species with different GS, ploidy level and Grime's C-S-R (competitive, stress-tolerant, ruderal) plant strategies growing at the Park Grass Experiment (Rothamsted, UK), established in 1856. The biomass-weighted mean GS of species growing on plots with the addition of both N and P fertilizer were significantly higher than that of plants growing on control plots and plots with either N or P. The plants on these N + P plots are dominated by polyploids with large GS and a competitive plant strategy. The results are consistent with our hypothesis that large genomes are costly to build and maintain under N and P limitation. Hence GS and ploidy are significant traits affecting biomass growth under different nutrient regimes, influencing plant community composition and ecosystem dynamics. We propose that GS is a critical factor needed in models that bridge the knowledge gap between biodiversity and ecosystem functioning.


Assuntos
Tamanho do Genoma , Magnoliopsida/genética , Nitrogênio/deficiência , Fósforo/deficiência , Ploidias , Biodiversidade , Biomassa , Ecossistema , Fertilizantes , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia
17.
PLoS One ; 10(8): e0134399, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244874

RESUMO

The link between the expression of the signals used by male animals in contests with the traits which determine success in those contests is poorly understood. This is particularly true in holometabolous insects such as horned beetles where signal expression is determined during metamorphosis and is fixed during adulthood, whereas performance is influenced by post-eclosion feeding. We used path analysis to investigate the relationships between larval and adult nutrition, horn and body size and fitness-related traits such as strength and testes mass in the horned beetle Euoniticellus intermedius. In males weight gain post-eclosion had a central role in determining both testes mass and strength. Weight gain was unaffected by adult nutrition but was strongly correlated with by horn length, itself determined by larval resource availability, indicating strong indirect effects of larval nutrition on the adult beetle's ability to assimilate food and grow tissues. Female strength was predicted by a simple path diagram where strength was determined by eclosion weight, itself determined by larval nutrition: weight gain post-eclosion was not a predictor of strength in this sex. Based on earlier findings we discuss the insulin-like signalling pathway as a possible mechanism by which larval nutrition could affect adult weight gain and thence traits such as strength.


Assuntos
Peso Corporal/fisiologia , Besouros/fisiologia , Comportamento Alimentar/fisiologia , Aumento de Peso/fisiologia , Algoritmos , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Feminino , Cornos/crescimento & desenvolvimento , Cornos/fisiologia , Insulina/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Modelos Teóricos , Fatores Sexuais , Transdução de Sinais/fisiologia
18.
Am Nat ; 183(3): E89-104, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561609

RESUMO

Inherited microbial symbionts can modulate host susceptibility to natural enemy attack. A wider range of symbionts influence host population demography without altering individual susceptibility, and it has been suggested that these may modify host disease risk through altering the rate of exposure to natural enemies. We present the first test of this thesis, specifically testing whether male-killing symbionts alter the epidemiology of a sexually transmitted infection (STI) carried by its host. STIs are typically expected to show female-biased epidemics, and we first present a simple model which indicates that male-biased STI epidemics may occur where symbionts create female-biased population sex ratios. We then examined the dynamics of a STI in the ladybird beetle Adalia bipunctata, which is also host to a male-killing bacterium. We present evidence that male-biased epidemics of the STI are observed in natural populations when the male-killer is common. Laboratory experiments did not support a role for differential susceptibility of male and female hosts to the STI, nor a protective role for the symbiont, in creating this bias. We conclude that the range of symbionts likely to alter parasite epidemiology will be much wider than previously envisaged, because it will additionally include those that impact host demography alone.


Assuntos
Besouros/microbiologia , Besouros/parasitologia , Ácaros/fisiologia , Spiroplasma/fisiologia , Simbiose , Animais , Meio Ambiente , Feminino , Masculino , Modelos Biológicos , Fatores Sexuais
19.
Sci Rep ; 3: 2386, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23989080

RESUMO

A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies.


Assuntos
Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Pele/fisiopatologia , Pele/efeitos da radiação , Cachalote/fisiologia , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Animais , Proteoma/metabolismo , Especificidade da Espécie
20.
BMC Res Notes ; 6: 264, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23837727

RESUMO

BACKGROUND: Despite international success in reducing ozone-depleting emissions, ultraviolet radiation (UV) is not expected to decrease for several decades. Thus, it is pressing to implement tools that allow investigating the capacity of wildlife to respond to excessive UV, particularly species like cetaceans that lack anatomical or physiological protection. One approach is to examine epidermal expression of key genes involved in genotoxic stress response pathways. However, quantitation of mRNA transcripts requires previous standardization, with accurate selection of control and target genes. The latter is particularly important when working with environmental stressors such as UV that can activate numerous genes. RESULTS: Using 20 epidermal biopsies from blue, fin and sperm whale, we found that the genes encoding the ribosomal proteins L4 and S18 (RPL4 and RPS18) were the most suitable to use as controls, followed by the genes encoding phosphoglycerate kinase 1 (PGK1) and succinate dehydrogenase complex subunit A (SDHA). A careful analysis of the transcription pathways known to be activated by UV-exposure in humans and mice led us to select as target genes those encoding for i) heat shock protein 70 (HSP70) an indicator of general cell stress, ii) tumour suppressor protein P53 (P53), a transcription factor activated by UV and other cell stressors, and iii) KIN17 (KIN), a cell cycle protein known to be up-regulated following UV exposure. These genes were successfully amplified in the three species and quantitation of their mRNA transcripts was standardised using RPL4 and RPS18. Using a larger sample set of 60 whale skin biopsies, we found that the target gene with highest expression was HSP70 and that its levels of transcription were correlated with those of KIN and P53. Expression of HSP70 and P53 were both related to microscopic sunburn lesions recorded in the whales' skin. CONCLUSION: This article presents groundwork data essential for future qPCR-based studies on the capacity of wildlife to resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18.


Assuntos
Seleção Genética , Raios Ultravioleta , Baleias/genética , Animais , Biópsia , DNA Complementar , Expressão Gênica , Testes de Mutagenicidade , Reação em Cadeia da Polimerase em Tempo Real , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...