Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 17(1): 7, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347594

RESUMO

Tau is a microtubule-associated protein that is regulated by post-translational modifications. The most studied of these modifications is phosphorylation, which affects Tau's aggregation and loss- and gain-of-functions, including the interaction with microtubules, in Alzheimer's disease and primary tauopathies. However, little is known about how Tau's phosphorylation state affects its dynamics and organisation at the single-molecule level. Here, using quantitative single-molecule localisation microscopy, we examined how mimicking or abrogating phosphorylation at 14 disease-associated serine and threonine residues through mutagenesis influences the behaviour of Tau in live Neuro-2a cells. We observed that both pseudohyperphosphorylated Tau (TauE14) and phosphorylation-deficient Tau (TauA14) exhibit a heterogeneous mobility pattern near the plasma membrane. Notably, we found that the mobility of TauE14 molecules was higher than wild-type Tau molecules, while TauA14 molecules displayed lower mobility. Moreover, TauA14 was organised in a filament-like structure resembling cytoskeletal filaments, within which TauA14 exhibited spatial and kinetic heterogeneity. Our study provides a direct visualisation of how the phosphorylation state of Tau affects its spatial and temporal organisation, presumably reflecting the phosphorylation-dependent changes in the interactions between Tau and its partners. We suggest that alterations in Tau dynamics resulting from aberrant changes in phosphorylation could be a critical step in its pathological dysregulation.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Fosforilação , Proteínas tau/metabolismo , Imagem Individual de Molécula , Doença de Alzheimer/patologia , Microtúbulos/metabolismo
2.
Mol Brain ; 16(1): 6, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639708

RESUMO

Synaptic degeneration is a precursor of synaptic and neuronal loss in neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia with tau pathology (FTD-tau), a group of primary tauopathies. A critical role in this degenerative process is assumed by enzymes such as the kinase Fyn and its counterpart, the phosphatase striatal-enriched tyrosine phosphatase 61 (STEP61). Whereas the role of Fyn has been widely explored, less is known about STEP61 that localises to the postsynaptic density (PSD) of glutamatergic neurons. In dementias, synaptic loss is associated with an increased burden of pathological aggregates. Tau pathology is a hallmark of both AD (together with amyloid-ß deposition) and FTD-tau. Here, we examined STEP61 and its activity in human and animal brain tissue and observed a correlation between STEP61 and disease progression. In early-stage human AD, an initial increase in the level and activity of STEP61 was observed, which decreased with the loss of the synaptic marker PSD-95; in FTD-tau, there was a reduction in STEP61 and PSD-95 which correlated with clinical diagnosis. In APP23 mice with an amyloid-ß pathology, the level and activity of STEP61 were increased in the synaptic fraction compared to wild-type littermates. Similarly, in the K3 mouse model of FTD-tau, which we assessed at two ages compared to wild-type, expression and activity of STEP61 were increased with ageing. Together, these findings suggest that STEP contributes differently to the pathogenic process in AD and FTD-tau, and that its activation may be an early response to a degenerative process.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Proteínas Tirosina Fosfatases não Receptoras , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Amiloide , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Camundongos Transgênicos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas tau , Tirosina , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
3.
EMBO J ; 41(19): e111265, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004506

RESUMO

Accumulation of aggregates of the microtubule-binding protein Tau is a pathological hallmark of Alzheimer's disease. While Tau is thought to primarily associate with microtubules, it also interacts with and localizes to the plasma membrane. However, little is known about how Tau behaves and organizes at the plasma membrane of live cells. Using quantitative, single-molecule imaging, we show that Tau exhibits spatial and kinetic heterogeneity near the plasma membrane of live cells, resulting in the formation of nanometer-sized hot spots. The hot spots lasted tens of seconds, much longer than the short dwell time (∼ 40 ms) of Tau on microtubules. Pharmacological and biochemical disruption of Tau/microtubule interactions did not prevent hot spot formation, suggesting that these are different from the reported Tau condensation on microtubules. Although cholesterol removal has been shown to reduce Tau pathology, its acute depletion did not affect Tau hot spot dynamics. Our study identifies an intrinsic dynamic property of Tau near the plasma membrane that may facilitate the formation of assembly sites for Tau to assume its physiological and pathological functions.


Assuntos
Microtúbulos , Imagem Individual de Molécula , Membrana Celular/metabolismo , Cinética , Microtúbulos/metabolismo , Proteínas tau/metabolismo
4.
Nat Rev Neurosci ; 22(12): 723-740, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34725519

RESUMO

The synapse has emerged as a critical neuronal structure in the degenerative process of Alzheimer disease (AD), in which the pathogenic signals of two key players - amyloid-ß (Aß) and tau - converge, thereby causing synaptic dysfunction and cognitive deficits. The synapse presents a dynamic, confined microenvironment in which to explore how key molecules travel, localize, interact and assume different levels of organizational complexity, thereby affecting neuronal function. However, owing to their small size and the diffraction-limited resolution of conventional light microscopic approaches, investigating synaptic structure and dynamics has been challenging. Super-resolution microscopy (SRM) techniques have overcome the resolution barrier and are revolutionizing our quantitative understanding of biological systems in unprecedented spatio-temporal detail. Here we review critical new insights provided by SRM into the molecular architecture and dynamic organization of the synapse and, in particular, the interactions between Aß and tau in this compartment. We further highlight how SRM can transform our understanding of the molecular pathological mechanisms that underlie AD. The application of SRM for understanding the roles of synapses in AD pathology will provide a stepping stone towards a broader understanding of dysfunction in other subcellular compartments and at cellular and circuit levels in this disease.


Assuntos
Doença de Alzheimer/patologia , Microscopia/métodos , Sinapses/ultraestrutura , Animais , Humanos
5.
J Neurosci ; 41(45): 9431-9451, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34607969

RESUMO

Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, ß, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1ß, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons.SIGNIFICANCE STATEMENT Tau pathology is closely associated with neurodegeneration in Alzheimer's disease and other tauopathies, but the toxic mechanisms remain a debated topic. We previously proposed that pathologic tau forms induce dysfunction and degeneration through aberrant activation of a PP1-dependent pathway that disrupts axonal transport. Here, we show that tau directly interacts with specific PP1 isoforms, increasing levels of active PP1. Pathogenic tau mutations enhance this interaction, further increasing active PP1 levels and impairing axonal transport in isolated squid axoplasm and primary hippocampal neurons. Mutant-tau-mediated impairment of axonal transport was mediated by PP1γ and a phosphatase-activating domain located at the amino terminus of tau. This work has important implications for understanding and potentially mitigating tau-mediated neurotoxicity in tauopathies.


Assuntos
Transporte Axonal/efeitos dos fármacos , Demência Frontotemporal , Neurônios/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas tau/farmacologia , Animais , Células Cultivadas , Decapodiformes , Feminino , Hipocampo , Humanos , Masculino , Mutação , Neurônios/efeitos dos fármacos , Ratos , Proteínas tau/genética
6.
Acta Neuropathol Commun ; 9(1): 110, 2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147135

RESUMO

The synthesis of new proteins is a fundamental aspect of cellular life and is required for many neurological processes, including the formation, updating and extinction of long-term memories. Protein synthesis is impaired in neurodegenerative diseases including tauopathies, in which pathology is caused by aberrant changes to the microtubule-associated protein tau. We recently showed that both global de novo protein synthesis and the synthesis of select ribosomal proteins (RPs) are decreased in mouse models of frontotemporal dementia (FTD) which express mutant forms of tau. However, a comprehensive analysis of the effect of FTD-mutant tau on ribosomes is lacking. Here we used polysome profiling, de novo protein labelling and mass spectrometry-based proteomics to examine how ribosomes are altered in models of FTD. We identified 10 RPs which were decreased in abundance in primary neurons taken from the K3 mouse model of FTD. We further demonstrate that expression of human tau (hTau) decreases both protein synthesis and biogenesis of the 60S ribosomal subunit, with these effects being exacerbated in the presence of FTD-associated tau mutations. Lastly, we demonstrate that expression of the amino-terminal projection domain of hTau is sufficient to reduce protein synthesis and ribosomal biogenesis. Together, these data reinforce a role for tau in impairing ribosomal function.


Assuntos
Demência Frontotemporal , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/metabolismo , Ribossomos/patologia , Proteínas tau/metabolismo , Animais , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Masculino , Camundongos , Ribossomos/metabolismo
7.
Front Neurosci ; 11: 572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089864

RESUMO

Tauopathies are a diverse group of diseases featuring progressive dying-back neurodegeneration of specific neuronal populations in association with accumulation of abnormal forms of the microtubule-associated protein tau. It is well-established that the clinical symptoms characteristic of tauopathies correlate with deficits in synaptic function and neuritic connectivity early in the course of disease, but mechanisms underlying these critical pathogenic events are not fully understood. Biochemical in vitro evidence fueled the widespread notion that microtubule stabilization represents tau's primary biological role and that the marked atrophy of neurites observed in tauopathies results from loss of microtubule stability. However, this notion contrasts with the mild phenotype associated with tau deletion. Instead, an analysis of cellular hallmarks common to different tauopathies, including aberrant patterns of protein phosphorylation and early degeneration of axons, suggests that alterations in kinase-based signaling pathways and deficits in axonal transport (AT) associated with such alterations contribute to the loss of neuronal connectivity triggered by pathogenic forms of tau. Here, we review a body of literature providing evidence that axonal pathology represents an early and common pathogenic event among human tauopathies. Observations of axonal degeneration in animal models of specific tauopathies are discussed and similarities to human disease highlighted. Finally, we discuss potential mechanistic pathways other than microtubule destabilization by which disease-related forms of tau may promote axonopathy.

8.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785724

RESUMO

Little is known about the specific contributions of aging to the neuron dysfunction and death in Alzheimer's disease (AD). AD is characterized by the pathological accumulation of abnormal tau (a microtubule-associated protein), and the mislocalization of tau from the axon to the somatodendritic compartment is thought to play an important role in disease pathogenesis. The axon initial segment (AIS) is thought to play a role in the selective localization of tau in the axonal compartment. Thus, disruption in the AIS barrier may allow tau to diffuse freely back into the somatodendritic compartment and potentially lead to neurotoxicity. Here, we analyzed AISs using stereological methods and protein immunoblotting, and the localization of tau was assessed with immunofluorescence optical density measurements and protein immunoblotting. None of the outcome measurements assessed, including AIS structure, AIS protein levels, the distribution of tau in neurons of the hippocampus (HP), and total tau or phospho-tau protein levels were different in young, middle-, and old-age Fischer 344 rats. The outcome measurements assessed, including AIS structure, AIS protein levels, the distribution of tau in neurons of the HP, and total tau or phospho-tau protein levels were not different in young, middle-, and old-age Fischer 344 rats, with the exception of a small reduction in AIS volume and diameter in the CA2 region of aged animals. These data suggest that aging largely has no effect on these properties of the AIS or tau distribution, and thus, may not contribute directly to tau mislocalization.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Segmento Inicial do Axônio/metabolismo , Segmento Inicial do Axônio/patologia , Proteínas tau/metabolismo , Animais , Imunofluorescência , Hipocampo/metabolismo , Hipocampo/patologia , Immunoblotting , Masculino , Ratos Endogâmicos F344
9.
J Neurosci Methods ; 266: 32-41, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27031947

RESUMO

BACKGROUND: Axon viability is critical for maintaining neural connectivity, which is central to neural functionality. Many neurodegenerative diseases (e.g., Parkinson's disease (PD) and Alzheimer's disease) appear to involve extensive axonal degeneration that often precedes somatic loss in affected neural populations. Axonal degeneration involves a number of intracellular pathways and characteristic changes in axon morphology (i.e., swelling, fragmentation, and loss). NEW METHOD: We describe a relatively simple set of methods to quantify the axonal degeneration using the 6-hydroxydopamine neurotoxin model of PD in rats and a colchicine-induced model in primary rat neurons. Specifically, approaches are described that use the spaceballs stereological probe for tissue sections and petrimetrics stereological probe for cultured neurons, and image analysis techniques in both tissue sections and cultured neurons. RESULTS: These methods provide a mechanism for obtaining quantitative and semi-quantitative data to track the extent of axonal degeneration and may prove useful as outcome measures in studies aimed at preventing or slowing axonal degeneration in disease models. COMPARISON WITH EXISTING METHODS: Existing methods of quantification of axonal degeneration use densitometry and manual counts of axonal projections, but they do not utilize the random, unbiased systematic sampling approaches that are characteristic of stereological methods. The ImageJ thresholding analyses described here provide a descriptive method for quantifying the state of axonal degeneration. CONCLUSIONS: These methods provide an efficient and effective means to quantify the extent and state of axonal degeneration in animal tissue and cultured neurons and can be used in other models for the same purposes.


Assuntos
Axônios/patologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Degeneração Neural/patologia , Animais , Encéfalo/patologia , Células Cultivadas , Colchicina , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Oxidopamina , Transtornos Parkinsonianos/patologia , Ratos Sprague-Dawley , Software
10.
Methods Mol Biol ; 1382: 339-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611599

RESUMO

Dementias are among the most common neurological disorders, and Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD remains a looming health crisis despite great efforts to learn the mechanisms surrounding the neuron dysfunction and neurodegeneration that accompanies AD primarily in the medial temporal lobe. In addition to AD, a group of diseases known as frontotemporal dementias (FTDs) are degenerative diseases involving atrophy and degeneration in the frontal and temporal lobe regions. Importantly, AD and a number of FTDs are collectively known as tauopathies due to the abundant accumulation of pathological tau inclusions in the brain. The precise role tau plays in disease pathogenesis remains an area of strong research focus. A critical component to effectively study any human disease is the availability of models that recapitulate key features of the disease. Accordingly, a number of animal models are currently being pursued to fill the current gaps in our knowledge of the causes of dementias and to develop effective therapeutics. Recent developments in gene therapy-based approaches, particularly in recombinant adeno-associated viruses (rAAVs), have provided new tools to study AD and other related neurodegenerative disorders. Additionally, gene therapy approaches have emerged as an intriguing possibility for treating these diseases in humans. This chapter explores the current state of rAAV models of AD and other dementias, discuss recent efforts to improve these models, and describe current and future possibilities in the use of rAAVs and other viruses in treatments of disease.


Assuntos
Doença de Alzheimer/patologia , Tauopatias/patologia , Doença de Alzheimer/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Tauopatias/terapia , Proteínas tau/genética
11.
PLoS One ; 10(3): e0120120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25794171

RESUMO

In situ hybridization (ISH) is an extremely useful tool for localizing gene expression and changes in expression to specific cell populations in tissue samples across numerous research fields. Typically, a research group will put forth significant effort to design, generate, validate and then utilize in situ probes in thin or ultrathin paraffin embedded tissue sections. While combining ISH and IHC is an established technique, the combination of RNAscope ISH, a commercially available ISH assay with single transcript sensitivity, and IHC in thick free-floating tissue sections has not been described. Here, we provide a protocol that combines RNAscope ISH with IHC in thick free-floating tissue sections from the brain and allows simultaneous co-localization of genes and proteins in individual cells. This approach works well with a number of ISH probes (e.g. small proline-rich repeat 1a, ßIII-tubulin, tau, and ß-actin) and IHC antibody stains (e.g. tyrosine hydroxylase, ßIII-tubulin, NeuN, and glial fibrillary acidic protein) in rat brain sections. In addition, we provide examples of combining ISH-IHC dual staining in primary neuron cultures and double-ISH labeling in thick free-floating tissue sections from the brain. Finally, we highlight the ability of RNAscope to detect ectopic DNA in neurons transduced with viral vectors. RNAscope ISH is a commercially available technology that utilizes a branched or "tree" in situ method to obtain ultrasensitive, single transcript detection. Immunohistochemistry is a tried and true method for identifying specific protein in cell populations. The combination of a sensitive and versatile oligonucleotide detection method with an established and versatile protein assay is a significant advancement in studies using free-floating tissue sections.


Assuntos
Encéfalo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Neurônios/metabolismo , Animais , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Masculino , Neurônios/citologia , Cultura Primária de Células , Ratos
12.
Exp Neurol ; 237(1): 78-89, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22698685

RESUMO

Huntington's disease (HD) is a devastating autosomal-dominant neurodegenerative disorder initiated by an abnormally expanded polyglutamine in the huntingtin protein. Determining the contribution of specific factors to the pathogenesis of HD should provide rational targets for therapeutic intervention. One suggested contributor is the type 2 transglutaminase (TG2), a multifunctional calcium dependent enzyme. A role for TG2 in HD has been suggested because a polypeptide-bound glutamine is a rate-limiting factor for a TG2-catalyzed reaction, and TG2 can cross-link mutant huntingtin in vitro. Further, TG2 is up regulated in brain areas affected in HD. The objective of this study was to further examine the contribution of TG2 as a potential modifier of HD pathogenesis and its validity as a therapeutic target in HD. In particular our goal was to determine whether an increase in TG2 level, as documented in human HD brains, modulates the well-characterized phenotype of the R6/2 HD mouse model. To accomplish this objective a genetic cross was performed between R6/2 mice and an established transgenic mouse line that constitutively expresses human TG2 (hTG2) under control of the prion promoter. Constitutive expression of hTG2 did not affect the onset and progression of the behavioral and neuropathological HD phenotype of R6/2 mice. We found no alterations in body weight changes, rotarod performances, grip strength, overall activity, and no significant effect on the neuropathological features of R6/2 mice. Overall the results of this study suggest that an increase in hTG2 expression does not significantly modify the pathology of HD.


Assuntos
Doença de Huntington/enzimologia , Doença de Huntington/genética , Fenótipo , Transglutaminases/biossíntese , Transglutaminases/genética , Idade de Início , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Proteínas de Ligação ao GTP , Humanos , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Glutamina gama-Glutamiltransferase , Distribuição Aleatória , Transglutaminases/fisiologia
13.
Hum Mol Genet ; 19(17): 3354-71, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20558522

RESUMO

Huntington's disease (HD) is an incurable autosomal-dominant neurodegenerative disorder initiated by an abnormally expanded polyglutamine domain in the huntingtin protein. It is proposed that abnormal mitochondrial Ca2+ capacity results in an increased susceptibility to mitochondrial permeability transition (MPT) induction that may contribute significantly to HD pathogenesis. The in vivo contribution of these hypothesized defects remains to be elucidated. In this proof-of-principle study, we examined whether increasing mitochondrial Ca2+ capacity could ameliorate the well-characterized phenotype of the R6/2 transgenic mouse model. Mouse models lacking cyclophilin D demonstrate convincingly that cyclophilin D is an essential component and a key regulator of MPT induction. Mitochondria of cyclophilin D knockout mice are particularly resistant to Ca2+ overload. We generated R6/2 mice with normal, reduced or absent cyclophilin D expression and examined the effect of increasing mitochondrial Ca2+ capacity on the behavioral and neuropathological features of the R6/2 model. A predicted outcome of this approach was the finding that cyclophilin D deletion enhanced the R6/2 brain mitochondria Ca2+ capacity significantly. Increased neuronal mitochondrial Ca2+ capacity failed to ameliorate either the behavioral and neuropathological features of R6/2 mice. We found no alterations in body weight changes, lifespan, RotaRod performances, grip strength, overall activity and no significant effect on the neuropathological features of R6/2 mice. The results of this study demonstrate that increasing neuronal mitochondrial Ca2+-buffering capacity is not beneficial in the R6/2 mouse model of HD.


Assuntos
Cálcio/metabolismo , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Camundongos , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Feminino , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...