Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316559

RESUMO

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Masculino , Feminino , Camundongos , Animais , Tálamo/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Sinapses
2.
J Mech Behav Biomed Mater ; 150: 106302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160641

RESUMO

Skeletal muscle is a complex tissue, exhibiting not only direction-dependent material properties (commonly modeled as a transversely isotropic material), but also changes in observed material properties due to factors such as contraction and passive stretch. In this work, we evaluated the effect of muscle passive stretch on shear wave propagation along and across the muscle fibers using a rotational 3D shear wave elasticity imaging system and automatic analysis methods. We imaged the vastus lateralis of 10 healthy volunteers, modulating passive stretch by imaging at 8 different knee flexion angles (controlled by a BioDex system). In addition to demonstrating the ability of this acquisition and automatic processing system to estimate muscle shear moduli over a range of values, we evaluated potential higher order biomarkers for muscle health that capture the change in muscle stiffness along and across the fibers with changing knee flexion. The median within-subject variability of these biomarkers is found to be <16%, suggesting promise as a repeatable clinical metric. Additionally, we report an unexpected observation: that shear wave signal amplitude along the fibers increases with increasing flexion and muscle stiffness, which is not predicted by transversely isotropic (TI) material simulations. This observation may point to an additional potential biomarker for muscle health or inform other material modeling choices for muscle.


Assuntos
Técnicas de Imagem por Elasticidade , Músculo Quadríceps , Humanos , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Músculo Esquelético/fisiologia , Elasticidade , Fibras Musculares Esqueléticas , Biomarcadores , Técnicas de Imagem por Elasticidade/métodos
3.
Ultrasound Med Biol ; 49(3): 750-760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36543617

RESUMO

Shear wave elasticity imaging (SWEI) usually assumes an isotropic material; however, skeletal muscle is typically modeled as a transversely isotropic material with independent shear wave speeds in the directions along and across the muscle fibers. To capture these direction-dependent properties, we implemented a rotational 3-D SWEI system that measures the shear wave speed both along and across the fibers in a single 3-D acquisition, with automatic detection of the muscle fiber orientation. We tested and examined the repeatability of this system's measurements in the vastus lateralis of 10 healthy volunteers. The average coefficient of variation of the measurements from this 3-D SWEI system was 5.3% along the fibers and 8.1% across the fibers. When compared with estimated respective 2-D SWEI values of 16.0% and 83.4%, these results suggest using 3-D SWEI has the potential to improve the precision of SWEI measurements in muscle. Additionally, we observed no significant difference in shear wave speed between the dominant and non-dominant legs along (p = 0.26) or across (p = 0.65) the muscle fibers.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Técnicas de Imagem por Elasticidade/métodos , Músculo Esquelético/diagnóstico por imagem , Imageamento Tridimensional , Músculo Quadríceps , Elasticidade
4.
IEEE Trans Ultrason Ferroelectr Freq Control ; 69(11): 3145-3154, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054392

RESUMO

Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus µL , the transverse shear modulus µT , and the tensile anisotropy χE . Measurement of the SV wave is necessary to characterize χE , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: µL , µT , χE , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as µL increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as µT increases, the SV wave speeds increase; 3) as χE increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].


Assuntos
Técnicas de Imagem por Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Ultrassom , Elasticidade , Anisotropia , Ultrassonografia
5.
IEEE Trans Med Imaging ; 41(1): 133-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415833

RESUMO

Using a 3D rotational shear wave elasticity imaging (SWEI) setup, 3D shear wave data were acquired in the vastus lateralis of a healthy volunteer. The innate tilt between the transducer face and the muscle fibers results in the excitation of multiple shear wave modes, allowing for more complete characterization of muscle as an elastic, incompressible, transversely isotropic (ITI) material. The ability to measure both the shear vertical (SV) and shear horizontal (SH) wave speed allows for measurement of three independent parameters needed for full ITI material characterization: the longitudinal shear modulus µL , the transverse shear modulus µT , and the tensile anisotropy χE . Herein we develop and validate methodology to estimate these parameters and measure them in vivo, with µL = 5.77±1.00 kPa, µT = 1.93±0.41 kPa (giving shear anisotropy χµ = 2.11±0.92 ), and χE = 4.67±1.40 in a relaxed vastus lateralis muscle. We also demonstrate that 3D SWEI can be used to more accurately characterize muscle mechanical properties as compared to 2D SWEI.


Assuntos
Técnicas de Imagem por Elasticidade , Ultrassom , Anisotropia , Módulo de Elasticidade , Elasticidade , Humanos , Músculos
6.
Phys Med Biol ; 66(21)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34544067

RESUMO

Five material parameters are required to describe a transversely isotropic (TI) material including two Poisson's ratios that characterize the compressibility of the material. Both Poisson's ratios must be specified to model an incompressible, TI (ITI) material. However, a previous analysis of the procedure used to evaluate the incompressible limit in a two-dimensional (2D) space of Poisson's ratios has shown that elements of the stiffness tensor are not unique in this limit, and that an additional, fourth parameter is required to model these elements for an ITI material. In this study, we extend this analysis to the case of shear wave propagation in an ITI material. Shear wave signals are modeled using analytic Green's tensor methods to express the signals in terms of the phase velocity and polarization vectors of the shear horizontal (SH) and shear vertical (SV) propagation modes. In contrast to the previous result, the current analysis demonstrates that the phase velocity and polarization vectors are independent of the procedure used to evaluate the 2D limit of Poisson's ratios without the need to include an additional parameter. Thus, calculated shear wave signals are unique and can be used for comparison with experimental measurements to determine all three model parameters that characterize an ITI material.

7.
Ultrason Imaging ; 43(4): 167-174, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971769

RESUMO

Correctly calculating skin stiffness with ultrasound shear wave elastography techniques requires an accurate measurement of skin thickness. We developed and compared two algorithms, a thresholding method and a deep learning method, to measure skin thickness on ultrasound images. Here, we also present a framework for weakly annotating an unlabeled dataset in a time-effective manner to train the deep neural network. Segmentation labels for training were proposed using the thresholding method and validated with visual inspection by a human expert reader. We reduced decision ambiguity by only inspecting segmentations at the center A-line. This weak annotation approach facilitated validation of over 1000 segmentation labels in 2 hours. A lightweight deep neural network that segments entire 2D images was designed and trained on this weakly-labeled dataset. Averaged over six folds of cross-validation, segmentation accuracy was 57% for the thresholding method and 78% for the neural network. In particular, the network was better at finding the distal skin margin, which is the primary challenge for skin segmentation. Both algorithms have been made publicly available to aid future applications in skin characterization and elastography.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Algoritmos , Humanos , Ultrassonografia
8.
J Mech Behav Biomed Mater ; 107: 103754, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32364950

RESUMO

Tissue nonlinearity is conventionally measured in shear wave elastography by studying the change in wave speed caused by the tissue deformation, generally known as the acoustoelastic effect. However, these measurements have mainly focused on the excitation and detection of one specific shear mode, while it is theoretically known that the analysis of multiple wave modes offers more information about tissue material properties that can potentially be used to refine disease diagnosis. This work demonstrated proof of concept using experiments and finite element simulations in a uniaxially stretched phantom by tilting the acoustic radiation force excitation axis with respect to the material's symmetry axis. Using this unique set-up, we were able to visualize two propagating shear wave modes across the stretch direction for stretches larger than 140%. Complementary simulations were performed using material parameters determined from mechanical testing, which enabled us to convert the observed shear wave behavior into a correct representative constitutive law for the phantom material, i.e. the Isihara model. This demonstrates the potential of measuring shear wave propagation in combination with shear wave modeling in complex materials as a non-invasive alternative for mechanical testing.


Assuntos
Técnicas de Imagem por Elasticidade , Acústica , Análise de Elementos Finitos , Imagens de Fantasmas
9.
Ultrasound Med Biol ; 46(5): 1092-1104, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057471

RESUMO

This work discusses challenges we have encountered in acquiring reproducible measurements of shear wave speed (SWS) in the median nerve and suggests methods for improving reproducibility. First, procedural acquisition challenges are described, including nerve echogenicity, transducer pressure and transmit focal depth. Second, we present an iterative, radon sum-based algorithm that was developed specifically for measuring the SWS in median nerves. SWSs were measured using single track location shear wave elasticity imaging (SWEI) in the median nerves of six healthy volunteers and six patients diagnosed with carpal tunnel syndrome. Unsuccessful measurements were associated with several challenges including reverberation artifacts, low signal-to-noise ratio and temporal window limitations for tracking the velocity wave. To address these challenges, an iterative convergence algorithm was implemented to identify an appropriate temporal processing window that removed the reverberation artifacts while preserving shear wave signals. Algorithmically, it was important to consider the lateral regression kernel size and position and the temporal window. Procedurally, both nerve echogenicity and transducer compression were determined to impact the measured SWS. Shear waves were successfully measured in the median nerve proximal to the carpal tunnel, but SWEI measurements were significantly compromised within the carpal tunnel itself. The velocity-based SWSs were statistically significantly higher than the displacement SWSs (p < 0.0001), demonstrating for the first time dispersion in the median nerve in vivo using SWEI.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Nervo Mediano/diagnóstico por imagem , Algoritmos , Artefatos , Síndrome do Túnel Carpal/diagnóstico por imagem , Humanos , Nervo Mediano/fisiologia , Condução Nervosa , Reprodutibilidade dos Testes , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...