Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 215: 108899, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929159

RESUMO

Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD), and a histologic hallmark of SFD is a thick layer of extracellular deposits beneath the retinal pigment epithelium (RPE). Previous studies of SFD patient-induced pluripotent stem cell (iPSC) derived RPE differ as to whether these cultures recapitulate this key clinical feature by forming increased drusenoid deposits. The primary purpose of this study is to examine whether SFD patient-derived iPSC-RPE form basal deposits similar to what is found in affected family member SFD globes and to determine whether SFD iPSC RPE may be more oxidatively stressed. We performed a careful comparison of iPSC RPE from three control individuals, multiple iPSC clones from two SFD patients' iPSC RPE, and post-mortem eyes of affected SFD family members. We also examined the effect of CRISPR-Cas9 gene correction of the S204C TIMP3 mutation on RPE phenotype. Finally, targeted metabolomics with liquid chromatography and mass spectrometry analysis and stable isotope-labeled metabolite analysis were performed to determine whether SFD RPE are more oxidatively stressed. We found that SFD iPSC-RPE formed significantly more sub-RPE deposits (∼6-90 µm in height) compared to control RPE at 8 weeks. These deposits were similar in composition to the thick layer of sub-RPE deposits found in SFD family member globes by immunofluorescence staining and TEM imaging. S204C TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in significantly reduced basal laminar and sub-RPE calcium deposits. We detected a ∼18-fold increase in TIMP3 accumulation in the extracellular matrix (ECM) of SFD RPE, and targeted metabolomics showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE, suggesting increased ECM turnover. Finally, SFD RPE cells have decreased intracellular reduced glutathione and were found to be more vulnerable to oxidative stress. Our findings suggest that elements of SFD pathology can be demonstrated in culture which may lead to insights into disease mechanisms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo
2.
J Biol Chem ; 292(31): 12895-12905, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28615447

RESUMO

Metabolite transport is a major function of the retinal pigment epithelium (RPE) to support the neural retina. RPE dysfunction plays a significant role in retinal degenerative diseases. We have used mass spectrometry with 13C tracers to systematically study nutrient consumption and metabolite transport in cultured human fetal RPE. LC/MS-MS detected 120 metabolites in the medium from either the apical or basal side. Surprisingly, more proline is consumed than any other nutrient, including glucose, taurine, lipids, vitamins, or other amino acids. Besides being oxidized through the Krebs cycle, proline is used to make citrate via reductive carboxylation. Citrate, made either from 13C proline or from 13C glucose, is preferentially exported to the apical side and is taken up by the retina. In conclusion, RPE cells consume multiple nutrients, including glucose and taurine, but prefer proline, and they actively synthesize and export metabolic intermediates to the apical side to nourish the outer retina.


Assuntos
Prolina/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Transporte Biológico , Isótopos de Carbono , Polaridade Celular , Células Cultivadas , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Técnicas de Cocultura , Embrião de Mamíferos/citologia , Glucose/metabolismo , Humanos , Cinética , Metabolômica/métodos , Camundongos , Retina/citologia , Retina/enzimologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/enzimologia , Taurina/metabolismo , Técnicas de Cultura de Tecidos
3.
Proc Natl Acad Sci U S A ; 113(51): 14710-14715, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27911769

RESUMO

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells that requires an active metabolism to maintain outer retinal homeostasis and compensate for oxidative stress. Using 13C metabolic flux analysis in human RPE cells, we found that RPE has an exceptionally high capacity for reductive carboxylation, a metabolic pathway that has recently garnered significant interest because of its role in cancer cell survival. The capacity for reductive carboxylation in RPE exceeds that of all other cells tested, including retina, neural tissue, glial cells, and a cancer cell line. Loss of reductive carboxylation disrupts redox balance and increases RPE sensitivity to oxidative damage, suggesting that deficiencies of reductive carboxylation may contribute to RPE cell death. Supporting reductive carboxylation by supplementation with an NAD+ precursor or its substrate α-ketoglutarate or treatment with a poly(ADP ribose) polymerase inhibitor protects reductive carboxylation and RPE viability from excessive oxidative stress. The ability of these treatments to rescue RPE could be the basis for an effective strategy to treat blinding diseases caused by RPE dysfunction.


Assuntos
Carbono/química , Olho/embriologia , Ácidos Cetoglutáricos/química , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/metabolismo , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ácidos Graxos/química , Feminino , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isocitrato Desidrogenase/metabolismo , Degeneração Macular/patologia , Camundongos , NAD/química , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Estresse Oxidativo , Oxigênio/química , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...