Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Adv Healthc Mater ; : e2301941, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471128

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.

2.
Adv Sci (Weinh) ; 11(2): e2305842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967351

RESUMO

Bone metastases are a common cause of suffering in breast and prostate cancer patients, however, the interaction between bone cells and cancer cells is poorly understood. Using a series of co-culture, conditioned media, human cancer spheroid, and organ-on-a-chip experiments, this study reveals that osteocytes suppress cancer cell proliferation and increase migration via tumor necrosis factor alpha (TNF-α) secretion. This action is regulated by osteocyte primary cilia and associated intraflagellar transport protein 88 (IFT88). Furthermore, it shows that cancer cells block this mechanism by secreting transforming growth factor beta (TGF-ß), which disrupts osteocyte cilia and IFT88 gene expression. This bi-directional crosstalk signaling between osteocytes and cancer cells is common to both breast and prostate cancer. This study also proposes that osteocyte inhibition of cancer cell proliferation decreases as cancer cells increase, producing more TGF-ß. Hence, a positive feedback loop develops accelerating metastatic tumor growth. These findings demonstrate the importance of cancer cell-osteocyte signaling in regulating breast and prostate bone metastases and support the development of therapies targeting this pathway.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Osteócitos/metabolismo , Cílios , Próstata , Neoplasias Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Biomed Mater ; 18(6)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37703884

RESUMO

Healthy synovium is critical for joint homeostasis. Synovial inflammation (synovitis) is implicated in the onset, progression and symptomatic presentation of arthritic joint diseases such as rheumatoid arthritis and osteoarthritis. Thus, the synovium is a promising target for the development of novel, disease-modifying therapeutics. However, target exploration is hampered by a lack of good pre-clinical models that accurately replicate human physiology and that are developed in a way that allows for widespread uptake. The current study presents a multi-channel, microfluidic, organ-on-a-chip (OOAC) model, comprising a 3D configuration of the human synovium and its associated vasculature, with biomechanical and inflammatory stimulation, built upon a commercially available OOAC platform. Healthy human fibroblast-like synoviocytes (hFLS) were co-cultured with human umbilical vein endothelial cells (HUVECs) with appropriate matrix proteins, separated by a flexible, porous membrane. The model was developed within the Emulate organ-chip platform enabling the application of physiological biomechanical stimulation in the form of fluid shear and cyclic tensile strain. The hFLS exhibited characteristic morphology, cytoskeletal architecture and matrix protein deposition. Synovial inflammation was initiated through the addition of interleukin-1ß(IL-1ß) into the synovium channel resulting in the increased secretion of inflammatory and catabolic mediators, interleukin-6 (IL-6), prostaglandin E2 (PGE2), matrix metalloproteinase 1 (MMP-1), as well as the synovial fluid constituent protein, hyaluronan. Enhanced expression of the inflammatory marker, intercellular adhesion molecule-1 (ICAM-1), was observed in HUVECs in the vascular channel, accompanied by increased attachment of circulating monocytes. This vascularised human synovium-on-a-chip model recapitulates a number of the functional characteristics of both healthy and inflamed human synovium. Thus, this model offers the first human synovium organ-chip suitable for widespread adoption to understand synovial joint disease mechanisms, permit the identification of novel therapeutic targets and support pre-clinical testing of therapies.


Assuntos
Células Endoteliais , Monócitos , Humanos , Microfluídica , Membrana Sinovial/metabolismo , Inflamação/metabolismo , Dispositivos Lab-On-A-Chip
4.
Int J Spine Surg ; 17(3): 387-398, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37315993

RESUMO

BACKGROUND: Durotomy during endoscopic spine surgery can cause a patient's neurological or cardiovascular status to deteriorate unexpectedly intra- or postoperatively. There is currently limited literature regarding appropriate fluid management strategies, irrigation-related risk factors, and clinical consequences of incidental durotomy during spinal endoscopy, and no validated irrigation protocol exists for endoscopic spine surgery. Thus, the present article sought to (1) describe 3 cases of durotomy, (2) investigate standard epidural pressure measurements, and (3) survey endoscopic spine surgeons on the incidence of adverse effects believed to result from durotomy. MATERIALS AND METHODS: The authors first reviewed clinical outcomes and analyzed complications in 3 patients with intraoperatively recognized incidental durotomy. Second, the authors conducted a small case series with intraoperative epidural pressure measurements during gravity-assisted irrigated video endoscopy of the lumbar spine. Measurements were conducted on 12 patients with a transducer assembly that was introduced through the endoscopic working channel of the RIWOSpine Panoview Plus and Vertebris endoscope to the decompression site in the spine. Third, the authors conducted a retrospective, multiple-choice survey of endoscopic spine surgeons to better understand the frequency and seriousness of problems they attributed to irrigation fluid escaping from the surgical decompression site into the spinal canal and neural axis. Descriptive and correlative statistical analyses were performed on the surgeons' responses. RESULTS: In the first part of this study, durotomy-related complications during irrigated spinal endoscopy were observed in 3 patients. Postoperative head computed tomographic (CT) images revealed massive blood in the intracranial subarachnoid space, the basal cisterns, the III and IV ventricle, and the lateral ventricles characteristic of an arterial fisher grade IV subarachnoid hemorrhage, and hydrocephalus without evidence of aneurysms or angiomas. Two additional patients developed intraoperative seizures, cardiac arrhythmia, and hypotension. The head CT image in 1 of these 2 patients had intracranial air entrapment.In the second part, epidural pressure measurements in 12 patients who underwent uneventful routine lumbar interlaminar decompression for L4-L5 and L5-S1 disc herniation showed an average epidural pressure of 24.5 mm Hg.In the third part, the online survey was accessed by 766 spine surgeons worldwide and had a response rate of 43.6%. Irrigation-related problems were reported by 38% of responding surgeons. Only 11.8% used irrigation pumps, with 90% running the pump above 40 mm Hg. Headaches (4.5%) and neck pain (4.9%) were observed by nearly a 10th (9.4%) of surgeons. Seizures in combination with headaches, neck and abdominal pain, soft tissue edema, and nerve root injury were reported by another 5 surgeons. One surgeon reported a delirious patient. Another 14 surgeons thought that they had patients with neurological deficits ranging from nerve root injury to cauda equina syndrome related to irrigation fluid. Autonomic dysreflexia associated with hypertension was attributed by 19 of the 244 responding surgeons to the noxious stimulus of escaped irrigation fluid that migrated from the decompression site in the spinal canal. Two of these 19 surgeons reported 1 case associated with a recognized incidental durotomy and another with postoperative paralysis. CONCLUSIONS: Patients should be educated preoperatively about the risk of irrigated spinal endoscopy. Although rare, intracranial blood, hydrocephalus, headaches, neck pain, seizures, and more severe complications, including life-threatening autonomic dysreflexia with hypertension, may arise if irrigation fluid enters the spinal canal or the dural sac and migrates from the endoscopic site along the neural axis rostrally. Experienced endoscopic spine surgeons suspect a correlation between durotomy and irrigation-related extra- and intradural pressure equalization that could be problematic if associated with high volumes of irrigation fluid LEVEL OF EVIDENCE: 3.

5.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765593

RESUMO

Organ-on-chip systems are capable of replicating complex tissue structures and physiological phenomena. The fine control of biochemical and biomechanical cues within these microphysiological systems provides opportunities for cancer researchers to build complex models of the tumour microenvironment. Interest in applying organ chips to investigate mechanisms such as metastatsis and to test therapeutics has grown rapidly, and this review draws together the published research using these microfluidic platforms to study cancer. We focus on both in-house systems and commercial platforms being used in the UK for fundamental discovery science and therapeutics testing. We cover the wide variety of cancers being investigated, ranging from common carcinomas to rare sarcomas, as well as secondary cancers. We also cover the broad sweep of different matrix microenvironments, physiological mechanical stimuli and immunological effects being replicated in these models. We examine microfluidic models specifically, rather than organoids or complex tissue or cell co-cultures, which have been reviewed elsewhere. However, there is increasing interest in incorporating organoids, spheroids and other tissue cultures into microfluidic organ chips and this overlap is included. Our review includes a commentary on cancer organ-chip models being developed and used in the UK, including work conducted by members of the UK Organ-on-a-Chip Technologies Network. We conclude with a reflection on the likely future of this rapidly expanding field of oncological research.

6.
Methods Mol Biol ; 2598: 157-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355291

RESUMO

Primary cilia regulate and coordinate a variety of cell signaling pathways important in chondrocyte physiology and cartilage development, health, and disease. Despite this, the chondrocyte primary cilium and its associated role in cartilage biology remains poorly understood. Key to elucidating primary cilia structure and function in chondrocytes is the ability to visualize this unique structure. Here we describe materials and methods for immunofluorescence labeling, microscopy, and measurement of chondrocyte primary cilia.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Cílios/metabolismo , Transdução de Sinais
7.
In Vitro Model ; 1(6): 405-412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570670

RESUMO

Purpose: In vivo, the circadian clock drives 24-h rhythms in human physiology. Isolated cells in vitro retain a functional clockwork but lack necessary timing cues resulting in the rapid loss of tissue-level circadian rhythms. This study tests the hypothesis that repeated daily mechanical stimulation acts as a timing cue for the circadian clockwork. The delineation and integration of circadian timing cues into predictive in vitro model systems, including organ-on-a-chip (OOAC) devices, represent a novel concept that introduces a key component of in vivo physiology into predictive in vitro model systems. Methods: Quiescent bovine chondrocytes were entrained for 3 days by daily 12-h bouts of cyclic biaxial tensile strain (10%, 0.33 Hz, Flexcell) before sampling during free-running conditions. The core clock protein, BMAL-1, was quantified from normalised Western Blot signal intensity and the temporal oscillations characterised by Cosinor linear fit with 24-h period. Results: Following entrainment, the cell-autonomous oscillations of the molecular clock protein, BMAL-1, exhibited circadian (24 h) periodicity (p < 0.001) which aligned to the diurnal mechanical stimuli. A 6-h phase shift in the mechanical entrainment protocol resulted in an equivalent shift of the circadian clockwork. Thus, repeated daily mechanical stimuli synchronised circadian rhythmicity of chondrocytes in vitro. Conclusion: This work demonstrates that daily mechanical stimulation can act as a timing cue that is sufficient to entrain the peripheral circadian clock in vitro. This discovery may be exploited to induce and sustain circadian physiology within into predictive in vitro model systems, including OOAC systems. Integration of the circadian clock within these systems will enhance their potential to accurately recapitulate human diurnal physiology and hence augment their predictive value as drug testing platforms and as realistic models of human (patho)physiology. Supplementary Information: The online version contains supplementary material available at 10.1007/s44164-022-00032-x.

8.
Pain Physician ; 25(7): E1129-E1136, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36288600

RESUMO

BACKGROUND: Paravertebral cluneal nerves are constrained within a tunnel consisting of the thoracolumbar fascia and the iliac crest's superior rim as they pass over the iliac crest. Their involvement in low back pain has not been presented previously. OBJECTIVE: To develop a diagnostic and therapeutic protocol for radiofrequency ablation of paravertebral and iliac cluneal trigger points. STUDY DESIGN: In a prospective observational cohort study, clinically painful trigger points were anatomically defined with diagnostic local anesthetic injections containing a steroid. Validated trigger points were ablated and the resolution of low back pain was monitored and analyzed. SETTING: The Spinal Foundation, The Weymouth Hospital, London, United Kingdom. METHODS: Injections at painful trigger points were considered diagnostic if patients reported 50% or more low back pain relief sustained for 10 days or more. These patients were treated with aware state radiofrequency ablation of the trigger points if the back or referred pain remained refractory despite 3 months of core correction physiotherapy. Clinical outcomes were assessed with the visual analog scale (VAS) and Oswestry Disability Index (ODI) scores for low back pain at a minimum follow-up of 2 years. RESULTS: This prospective feasibility study included 52 patients with an average age of 56.9 ± 14.9 years ranging from 29 to 83. The mean follow-up was 38.33 months ranging from 25 to 66 months. The average symptom duration before the first consultation was 54.8 months. Many patients had multiple failed chronic pain management interventions, including failed epidural steroid injections (28/52, 53.8%); failed facet injections (45/52, 86.5%); failed facet rhizotomies (20/52, 38.5%); and failed sacroiliac joint ablations (34/52, 65/4%). The majority had had spine surgery before presenting with persistent low back or radiating pain. The surgeries were microdiscectomy (38.5%), laminectomy (11.5%), laminotomy (3.8%), endoscopic transforaminal decompression (9.6%), foraminoplasty (1.9%), sacroiliac joint fusion (11.5%), total disc replacement (13.5%), and lumbar fusion (34.6%). Chief concerns were low back (69.2%), buttock pain (71.2%), groin pain (40.4%), trochanteric pain (28.8%), abdominal or flank pain (5.8%), anterior thigh pain (32.7%), and symptoms mimicking sciatica (19.2%). Validated painful trigger points were the lateral (5.7%), superior (48.1%), medial (23.1%), or a combination of 2 (23.1%). The VAS reduction was from 7.25 ± 1.79 to 1.11 ± 0.98 (P < 0.0001). The ODI reduction was from 51.23 ± 9.58 to 7.11 ± 6.69 (P < 0.001). The Prolo score was reduced from 3.59 ± 0.72 to 1.35 ± 0.59. Symptoms resolved completely in 34 (65.4%) patients but persisted slightly in 9 (17.3%) and mildly in another 8 (15.4%). There were no cases of infection, dysesthesia, numbness, or paralysis. LIMITATIONS: Our study suffers from low patient numbers and the absence of another diagnostic test definitively confirming the presence of painful cluneal nerve involvement. CONCLUSION: Cluneal trigger points should be considered in the differential diagnosis of pain in the lower back, flank, lower abdominal, buttock, trochanteric, groin, and thigh area. It is one form of so-called "pseudo-sciatica." The authors' diagnostic injection protocol suggests that most patients with cluneal trigger points may successfully be treated with percutaneous radiofrequency ablation.


Assuntos
Dor Lombar , Ciática , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Dor Lombar/cirurgia , Ílio/inervação , Estudos Prospectivos , Anestésicos Locais/uso terapêutico
9.
PLoS One ; 17(9): e0273832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36108273

RESUMO

The bone-cartilage unit (BCU) is a universal feature in diarthrodial joints, which is mechanically-graded and subjected to shear and compressive strains. Changes in the BCU have been linked to osteoarthritis (OA) progression. Here we report existence of a physiological internal strain gradient (pre-strain) across the BCU at the ultrastructural scale of the extracellular matrix (ECM) constituents, specifically the collagen fibril. We use X-ray scattering that probes changes in the axial periodicity of fibril-level D-stagger of tropocollagen molecules in the matrix fibrils, as a measure of microscopic pre-strain. We find that mineralized collagen nanofibrils in the calcified plate are in tensile pre-strain relative to the underlying trabecular bone. This behaviour contrasts with the previously accepted notion that fibrillar pre-strain (or D-stagger) in collagenous tissues always reduces with mineralization, via reduced hydration and associated swelling pressure. Within the calcified part of the BCU, a finer-scale gradient in pre-strain (0.6% increase over ~50µm) is observed. The increased fibrillar pre-strain is linked to prior research reporting large tissue-level residual strains under compression. The findings may have biomechanical adaptative significance: higher in-built molecular level resilience/damage resistance to physiological compression, and disruption of the molecular-level pre-strains during remodelling of the bone-cartilage interface may be potential factors in osteoarthritis-based degeneration.


Assuntos
Osteoartrite , Tropocolágeno , Cartilagem , Colágeno/química , Matriz Extracelular , Humanos
10.
NPJ Breast Cancer ; 8(1): 109, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127361

RESUMO

Women with ductal carcinoma in situ (DCIS) have an increased risk of progression to invasive breast cancer. Although not all women with DCIS will progress to invasion, all are treated as such, emphasising the need to identify prognostic biomarkers. We have previously shown that altered myoepithelial cells in DCIS predict disease progression and recurrence. By analysing DCIS duct size in sections of human breast tumour samples, we identified an associated upregulation of integrin ß6 and an increase in periductal fibronectin deposition with increased DCIS duct size that associated with the progression of DCIS to invasion. Our modelling of the mechanical stretching myoepithelial cells undergo during DCIS progression confirmed the upregulation of integrin ß6 and fibronectin expression in isolated primary and cell line models of normal myoepithelial cells. Our studies reveal that this mechanostimulated DCIS myoepithelial cell phenotype enhances invasion in a TGFß-mediated upregulation of MMP13. Immunohistochemical analysis identified that MMP13 was specifically upregulated in DCIS, and it was associated with progression to invasion. These findings implicate tissue mechanics in altering the myoepithelial cell phenotype in DCIS, and that these alterations may be used to stratify DCIS patients into low and high risk for invasive progression.

11.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210300, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965468

RESUMO

Modern epidemiological analyses to understand and combat the spread of disease depend critically on access to, and use of, data. Rapidly evolving data, such as data streams changing during a disease outbreak, are particularly challenging. Data management is further complicated by data being imprecisely identified when used. Public trust in policy decisions resulting from such analyses is easily damaged and is often low, with cynicism arising where claims of 'following the science' are made without accompanying evidence. Tracing the provenance of such decisions back through open software to primary data would clarify this evidence, enhancing the transparency of the decision-making process. Here, we demonstrate a Findable, Accessible, Interoperable and Reusable (FAIR) data pipeline. Although developed during the COVID-19 pandemic, it allows easy annotation of any data as they are consumed by analyses, or conversely traces the provenance of scientific outputs back through the analytical or modelling source code to primary data. Such a tool provides a mechanism for the public, and fellow scientists, to better assess scientific evidence by inspecting its provenance, while allowing scientists to support policymakers in openly justifying their decisions. We believe that such tools should be promoted for use across all areas of policy-facing research. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
COVID-19 , Gerenciamento de Dados , Humanos , Pandemias , Software , Fluxo de Trabalho
12.
J Pers Med ; 12(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35887562

RESUMO

Background: Endoscopically visualized spine surgery has become an essential tool that aids in identifying and treating anatomical spine pathologies that are not well demonstrated by traditional advanced imaging, including MRI. These pathologies may be visualized during endoscopic lumbar decompression (ELD) and categorized into primary pain generators (PPG). Identifying these PPGs provides crucial information for a successful outcome with ELD and forms the basis for our proposed personalized spine care protocol (SpineScreen). Methods: a prospective study of 412 patients from 7 endoscopic practices consisting of 207 (50.2%) males and 205 (49.8%) females with an average age of 63.67 years and an average follow-up of 69.27 months was performed to compare the durability of targeted ELD based on validated primary pain generators versus image-based open lumbar laminectomy, and minimally invasive lumbar transforaminal interbody fusion (TLIF) using Kaplan-Meier median survival calculations. The serial time was determined as the interval between index surgery and when patients were censored for additional interventional and surgical treatments for low back-related symptoms. A control group was recruited from patients referred for a surgical consultation but declined interventional and surgical treatment and continued on medical care. Control group patients were censored when they crossed over into any surgical or interventional treatment group. Results: of the 412 study patients, 206 underwent ELD (50.0%), 61 laminectomy (14.8%), and 78 (18.9%) TLIF. There were 67 patients in the control group (16.3% of 412 patients). The most common surgical levels were L4/5 (41.3%), L5/S1 (25.0%), and L4-S1 (16.3%). At two-year f/u, excellent and good Macnab outcomes were reported by 346 of the 412 study patients (84.0%). The VAS leg pain score reduction was 4.250 ± 1.691 (p < 0.001). No other treatment during the available follow-up was required in 60.7% (125/206) of the ELD, 39.9% (31/78) of the TLIF, and 19.7% (12/61 of the laminectomy patients. In control patients, only 15 of the 67 (22.4%) control patients continued with conservative care until final follow-up, all of which had fair and poor functional Macnab outcomes. In patients with Excellent Macnab outcomes, the median durability was 62 months in ELD, 43 in TLIF, and 31 months in laminectomy patients (p < 0.001). The overall survival time in control patients was eight months with a standard error of 0.942, a lower boundary of 6.154, and an upper boundary of 9.846 months. In patients with excellent Macnab outcomes, the median durability was 62 months in ELD, 43 in TLIF, and 31 months in laminectomy patients versus control patients at seven months (p < 0.001). The most common new-onset symptom for censoring was dysesthesia ELD (9.4%; 20/206), axial back pain in TLIF (25.6%;20/78), and recurrent pain in laminectomy (65.6%; 40/61) patients (p < 0.001). Transforaminal epidural steroid injections were tried in 11.7% (24/206) of ELD, 23.1% (18/78) of TLIF, and 36.1% (22/61) of the laminectomy patients. The secondary fusion rate among ELD patients was 8.8% (18/206). Among TLIF patients, the most common additional treatments were revision fusion (19.2%; 15/78) and multilevel rhizotomy (10.3%; 8/78). Common follow-up procedures in laminectomy patients included revision laminectomy (16.4%; 10/61), revision ELD (11.5%; 7/61), and multilevel rhizotomy (11.5%; 7/61). Control patients crossed over into ELD (13.4%), TLIF (13.4%), laminectomy (10.4%) and interventional treatment (40.3%) arms at high rates. Most control patients treated with spinal injections (55.5%) had excellent and good functional outcomes versus 40.7% with fair and poor (3.7%), respectively. The control patients (93.3%) who remained in medical management without surgery or interventional care (14/67) had the worst functional outcomes and were rated as fair and poor. Conclusions: clinical outcomes were more favorable with lumbar surgeries than with non-surgical control groups. Of the control patients, the crossover rate into interventional and surgical care was 40.3% and 37.2%, respectively. There are longer symptom-free intervals after targeted ELD than with TLIF or laminectomy. Additional intervention and surgical treatments are more often needed to manage new-onset postoperative symptoms in TLIF- and laminectomy compared to ELD patients. Few ELD patients will require fusion in the future. Considering the rising cost of surgical spine care, we offer SpineScreen as a simplified and less costly alternative to traditional image-based care models by focusing on primary pain generators rather than image-based criteria derived from the preoperative lumbar MRI scan.

13.
Int J Spine Surg ; 16(1): 139-150, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35177520

RESUMO

BACKGROUND: The aim of this study is to evaluate the safety and long-term clinical outcomes of transforaminal endoscopic foraminoplasty using local anesthesia and total intravenous analgesia (TIVA) in patients with single-level lumbar foraminal stenosis and unilateral leg pain. METHODS: Postoperative pain relief was self-evaluated by 46 consecutive patients using a visual analog scale (VAS) and Oswestry Disability Index (ODI). Patient scores were obtained before the procedure and at 6, 12, 24, and 60 months after surgery. RESULTS: Pain reduction of at least 50% in the VAS score and a decrease of at least 50% or more in ODI score was achieved in 37 of 46 patients throughout the follow-up period. Median VAS score decreased from 7.5 preoperatively to 2.5 postoperatively. Median ODI score decreased from 62% preoperatively to 15% postoperatively. All patients reached 24-month follow-up and 37 patients reached 60-month follow-up. There were no surgery-related complications. CONCLUSION: Transforaminal endoscopic foraminoplasty performed under local anesthesia and TIVA produces sustained reduction in pain and improves functionality in patients with single-level lumbar foraminal stenosis without complications even in patients with comorbidities. CLINICAL RELEVANCE: Endoscopic foraminoplasty may be a useful adjunct to open micro decompressive surgery for patients with foraminal stenosis of the lumbar spine LEVEL OF EVIDENCE: 4.

14.
J Theor Biol ; 539: 111059, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35181285

RESUMO

Trade is a complex, multi-faceted process that can contribute to the spread and persistence of disease. We here develop novel mechanistic models of supply. Our model is framed within a livestock trading system, where farms form and end trade partnerships with rates dependent on current demand, with these trade partnerships facilitating trade between partners. With these time-varying, stock dependent partnership and trade dynamics, our trading model goes beyond current state of the art modelling approaches. By studying instantaneous shocks to farm-level supply and demand we show that behavioural responses of farms lead to trading systems that are highly resistant to shocks with only temporary disturbances to trade observed. Individual adaptation in response to permanent alterations to trading propensities, such that animal flows are maintained, illustrates the ability for farms to find new avenues of trade, minimising disruptions imposed by such alterations to trade that common modelling approaches cannot adequately capture. In the context of endemic disease control, we show that these adaptations hinder the potential beneficial reductions in prevalence such changes to trading propensities have previously been shown to confer. Assessing the impact of a common disease control measure, post-movement batch testing, highlights the ability for our model to measure the stress on multiple components of trade imposed by such control measures and also highlights the temporary and, in some cases, the permanent disturbances to trade that post-movement testing has on the trading system.


Assuntos
Gado , Animais
15.
Lasers Surg Med ; 54(4): 530-539, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34989414

RESUMO

BACKGROUND: Percutaneous anterior laser and anterior endoscopic cervical spine surgery are associated with less approach trauma than conventional open cervical spine surgery. The literature illustrating their appropriate use corroborated with objective outcome evidence is scarce. The authors were interested in comparing the clinical outcomes following percutaneous laser disc decompression (PLDD) versus percutaneous endoscopic disc decompression (PEDD). © 2021 Wiley Periodicals LLC. MATERIALS AND METHODS: Thirty patients with soft contained symptomatic cervical disc herniations and an average age of 50.5 years (range 26 - 68 years; 16 males and 14 females) were prospectively enrolled in 2 groups of 15 patients to be either treated with PLDD or PEDD. All patients underwent PLDD or PEDD under local anesthesia and sedation. Clinical outcomes were assessed with the Macnab criteria VAS score for arm pain. Complications and reoperations were recorded. RESULTS: There were significant reductions in the VAS score for arm pain from preoperative 8.4 ± 2.5 to 3.1 ± 1.2 in the PLDD group (P < 0.03), and from preoperative 8.6 ± 2.7 to 2.4 ± 1.1 (P < 0.01) in the PEDD group. In the PLDD group, Macnab outcomes were excellent in 21% of patients, good in 44%, fair in 21%, and poor in 14%. In the PEDD group, Macnab outcomes were excellent in 14% of patients, good in 32%, fair in 12%, and poor in the remaining 12%. There were no statistically significant differences in clinical outcomes between the PLDD and the PEDD group. There were no approach-related or surgical complications. CONCLUSIONS: Tissue trauma is significantly reduced with laser and endoscopic surgery techniques. PLDD and PEDD are both suitable for the specific indication of soft, symptomatic contained cervical disc herniations. The authors' small prospective cohort study indicates that PLDD and PEDD are options for cervical decompression surgery when medical comorbidities or preferences by patients and surgeons dictate more minimally invasive strategies.


Assuntos
Deslocamento do Disco Intervertebral , Terapia a Laser , Adulto , Idoso , Descompressão Cirúrgica/métodos , Discotomia , Feminino , Humanos , Deslocamento do Disco Intervertebral/cirurgia , Terapia a Laser/métodos , Lasers , Masculino , Pessoa de Meia-Idade , Dor , Seleção de Pacientes , Estudos Prospectivos , Resultado do Tratamento
16.
J Clin Monit Comput ; 36(5): 1535-1546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35040037

RESUMO

Respiratory rate (RR) is a marker of critical illness, but during hospital care, RR is often inaccurately measured. The capaciflector is a novel sensor that is small, inexpensive, and flexible, thus it has the potential to provide a single-use, real-time RR monitoring device. We evaluated the accuracy of continuous RR measurements by capaciflector hardware both at rest and during exercise. Continuous RR measurements were made with capaciflectors at four chest locations. In healthy subjects (n = 20), RR was compared with strain gauge chest belt recordings during timed breathing and two different body positions at rest. In patients undertaking routine cardiopulmonary exercise testing (CPET, n = 50), RR was compared with pneumotachometer recordings. Comparative RR measurement bias and limits of agreement were calculated and presented in Bland-Altman plots. The capaciflector was shown to provide continuous RR measurements with a bias less than 1 breath per minute (BPM) across four chest locations. Accuracy and continuity of monitoring were upheld even during vigorous CPET exercise, often with narrower limits of agreement than those reported for comparable technologies. We provide a unique clinical demonstration of the capaciflector as an accurate breathing monitor, which may have the potential to become a simple and affordable medical device.Clinical trial number: NCT03832205 https://clinicaltrials.gov/ct2/show/NCT03832205 registered February 6th, 2019.


Assuntos
Respiração , Taxa Respiratória , Humanos , Monitorização Fisiológica , Reprodutibilidade dos Testes
17.
Acta Biomater ; 136: 314-326, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563724

RESUMO

Biomechanical changes to the collagen fibrillar architecture in articular cartilage are believed to play a crucial role in enabling normal joint function. However, experimentally there is little quantitative knowledge about the structural response of the Type II collagen fibrils in cartilage to cyclic loading in situ, and the mechanisms that drive the ability of cartilage to withstand long-term repetitive loading. Here we utilize synchrotron small-angle X-ray scattering (SAXS) combined with in-situ cyclic loading of bovine articular cartilage explants to measure the fibrillar response in deep zone articular cartilage, in terms of orientation, fibrillar strain and inter-fibrillar variability in healthy cartilage and cartilage degraded by exposure to the pro-inflammatory cytokine IL-1ß. We demonstrate that under repeated cyclic loading the fibrils reversibly change the width of the fibrillar orientation distribution whilst maintaining a largely consistent average direction of orientation. Specifically, the effect on the fibrillar network is a 3-dimensional conical orientation broadening around the normal to the joint surface, inferred by 3D reconstruction of X-ray scattering peak intensity distributions from the 2D pattern. Further, at the intrafibrillar level, this effect is coupled with reversible reduction in fibrillar pre-strain under compression, alongside increase in the variability of fibrillar pre-strain. In IL-1ß degraded cartilage, the collagen rearrangement under cyclic loading is disrupted and associated with reduced tissue stiffness. These finding have implications as to how changes in local collagen nanomechanics might drive disease progression or vice versa in conditions such as osteoarthritis and provides a pathway to a mechanistic understanding of such diseases. STATEMENT OF SIGNIFICANCE: Structural deterioration in biomechanically loaded musculoskeletal organs, e.g., joint osteoarthritis and back pain, are linked to breakdown and changes in their collagen-rich cartilaginous tissue matrix. A critical component enabling cartilage biomechanics is the ultrastructural collagen fibrillar network in cartilage. However, experimental probes of the dynamic structural response of cartilage collagen to biomechanical loads are limited. Here, we use X-ray scattering during cyclic loading (as during walking) on joint tissue to show that cartilage fibrils resist loading by a reversible, three-dimensional orientation broadening and disordering mechanism at the molecular level, and that inflammation reduces this functionality. Our results will help understand how changes to small-scale tissue mechanisms are linked to ageing and osteoarthritic progression, and development of biomaterials for joint replacements.


Assuntos
Cartilagem Articular , Matriz Extracelular , Animais , Fenômenos Biomecânicos , Bovinos , Colágeno , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
Cancers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200761

RESUMO

Breast and prostate cancers preferentially metastasise to bone tissue, with metastatic lesions forming in the skeletons of most patients. On arriving in bone tissue, disseminated tumour cells enter a mechanical microenvironment that is substantially different to that of the primary tumour and is largely regulated by bone cells. Osteocytes, the most ubiquitous bone cell type, orchestrate healthy bone remodelling in response to physical exercise. However, the effects of mechanical loading of osteocytes on cancer cell behaviour is still poorly understood. The aim of this study was to characterise the effects of osteocyte mechanical stimulation on the behaviour of breast and prostate cancer cells. To replicate an osteocyte-controlled environment, this study treated breast (MDA-MB-231 and MCF-7) and prostate (PC-3 and LNCaP) cancer cell lines with conditioned media from MLO-Y4 osteocyte-like cells exposed to mechanical stimulation in the form of fluid shear stress. We found that osteocyte paracrine signalling acted to inhibit metastatic breast and prostate tumour growth, characterised by reduced proliferation and invasion and increased migration. In breast cancer cells, these effects were largely reversed by mechanical stimulation of osteocytes. In contrast, conditioned media from mechanically stimulated osteocytes had no effect on prostate cancer cells. To further investigate these interactions, we developed a microfluidic organ-chip model using the Emulate platform. This new organ-chip model enabled analysis of cancer cell migration, proliferation and invasion in the presence of mechanical stimulation of osteocytes by fluid shear stress, resulting in increased invasion of breast and prostate cancer cells. These findings demonstrate the importance of osteocytes and mechanical loading in regulating cancer cell behaviour and the need to incorporate these factors into predictive in vitro models of bone metastasis.

19.
iScience ; 24(6): 102674, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34189438

RESUMO

In a multi-level "deconstruction" of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix (ECM) molecules, COL11A1, cartilage oligomeric matrix protein, FN1, versican, cathepsin B, and COL1A1, are upregulated in cancer. Using biopsies, we identified significant associations between TGFßR activity, Hedgehog (Hh) signaling, and these ECM molecules and studied the associations in mono-, co-, and tri-culture. Activated omental fibroblasts (OFs) produced more matrix than malignant cells, directed by TGFßR and Hh signaling cross talk. We "reconstructed" omental metastases in tri-cultures of HGSOC cells, OFs, and adipocytes. This combination was sufficient to generate all six ECM proteins and the matrisome expression signature. TGFßR and Hh inhibitor combinations attenuated fibroblast activation and gel and ECM remodeling in these models. The tri-culture model reproduces key features of omental metastases and allows study of diseased-associated ECM.

20.
iScience ; 24(6): 102676, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34189439

RESUMO

Guided by a multi-level "deconstruction" of omental metastases, we developed a tetra (four cell)-culture model of primary human mesothelial cells, fibroblasts, adipocytes, and high-grade serous ovarian cancer (HGSOC) cell lines. This multi-cellular model replicated key elements of human metastases and allowed malignant cell invasion into the artificial omental structure. Prompted by findings in patient biopsies, we used the model to investigate the role of platelets in malignant cell invasion and extracellular matrix, ECM, production. RNA (sequencing and quantitative polymerase-chain reaction), protein (proteomics and immunohistochemistry) and image analysis revealed that platelets stimulated malignant cell invasion and production of ECM molecules associated with poor prognosis. Moreover, we found that platelet activation of mesothelial cells was critical in stimulating malignant cell invasion. Whilst platelets likely activate both malignant cells and mesothelial cells, the tetra-culture model allowed us to dissect the role of both cell types and model the early stages of HGSOC metastases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...