Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Appl Clin Med Phys ; 24(11): e14092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431696

RESUMO

PURPOSE: A 6FFF Monte Carlo (MC) dose calculation algorithm was commissioned for spine stereotactic radiosurgery (SRS). Model generation, validation, and ensuing model tuning are presented. METHODS: The model was generated using in-air and in-water commissioning measurements of field sizes between 10 and 400 mm2 . Commissioning measurements were compared to simulated water tank MC calculations to validate output factors, percent depth doses (PDDs), profile sizes and penumbras. Previously treated Spine SRS patients were re-optimized with the MC model to achieve clinically acceptable plans. Resulting plans were calculated on the StereoPHAN phantom and subsequently delivered to the microDiamond and SRSMapcheck to verify calculated dose accuracy. Model tuning was performed by adjusting the model's light field offset (LO) distance between physical and radiological positions of the MLCs, to improve field size and StereoPHAN calculation accuracy. Following tuning, plans were generated and delivered to an anthropomorphic 3D-printed spine phantom featuring realistic bone anatomy, to validate heterogeneity corrections. Finally, plans were validated using polymer gel (VIPAR based formulation) measurements. RESULTS: Compared to open field measurements, MC calculated output factors and PDDs were within 2%, profile penumbra widths were within 1 mm, and field sizes were within 0.5 mm. Calculated point dose measurements in the StereoPHAN were within 0.26% ± 0.93% and -0.10% ± 1.37% for targets and spinal canals, respectively. Average SRSMapcheck per-plan pass rates using a 2%/2 mm/10% threshold relative gamma analysis was 99.1% ± 0.89%. Adjusting LOs improved open field and patient-specific dosimetric agreement. Anthropomorphic phantom measurements were within -1.29% ± 1.00% and 0.27% ± 1.36% of MC calculated for the vertebral body (target) and spinal canal, respectively. VIPAR gel measurements confirmed good dosimetric agreement near the target-spine junction. CONCLUSION: Validation of a MC algorithm for simple fields and complex SRS spine deliveries in homogeneous and heterogeneous phantoms has been performed. The MC algorithm has been released for clinical use.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Radiometria , Água
2.
Med Dosim ; 48(3): 176-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095041

RESUMO

The stereotactic treatment of single cranial targets using noncoplanar volumetric modulated arc therapy (VMAT) allows for effective dose delivery to the target, while sparing normal brain tissue. In this study, the dosimetric effect of adding dynamic jaw tracking and automatic collimator angle selection in the optimization of single target cranial VMAT plans was investigated. Twenty-two cranial targets, previously treated with VMAT without dynamic jaw tracking and automatic collimator angle optimization (CAO) were chosen for replanning. Target volumes ranged from 0.441cc to 25.863cc with doses between 18Gy and 30Gy delivered in 1 to 5 fractions. Original plans were reoptimized with automatic CAO, keeping all other objectives the same (CAO plans). Next, original plans were reoptimized with both dynamic jaw tracking and CAO (DJT plans). Original, CAO, and DJT target doses were compared using the Paddick gradient index (GI) and the Paddick inverse conformity index (ICI), while normal tissue dose was compared using the volume of the normal brain receiving 5Gy, 10Gy, and 12Gy. The normal tissue volume was normalized to target size to allow cross comparison between plans. A one-sided t-test was performed to determine whether the changes in the plan metrics were statistically significant. CAO plans had improved GIs compared to the originals (p = 0.03) with insignificant changes in other plan metrics (p > 0.20). The addition of dynamic jaw tracking in DJT plans greatly improved ICIs and normal brain metrics (p < 0.01) compared to the CAO plans with minor improvement in ICIs (p = 0.07). The combined effect of adding dynamic jaw tracking and collimator optimization led to improvements in all metrics of the DJT plans when compared to the original (p < 0.02). The addition of dynamic jaw tracking and CAO led to improvements in both target and normal tissue dose metrics for single-target noncoplanar cranial VMAT plans.

3.
J Appl Clin Med Phys ; 24(3): e13886, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36601672

RESUMO

There is widespread consensus in the literature that flattening filter free (FFF) beams have a lower primary barrier transmission than flattened beams. Measurements presented here, however, show that for energy compensated FFF beams, the barrier transmission can be as much as 70% higher than for flattened beams. The ratio of the FFF barrier transmission to the flattened beam barrier transmission increases with increasing barrier thickness. The use of published FFF TVL data for energy compensated FFF beams could lead to an order of magnitude underestimate of the air kerma rate. There are little data in the literature on the field size dependence of the barrier transmission for flattened beams. Barrier transmission depends on the field size at the barrier, not at isocenter Measurements are presented showing the relative dependence of barrier transmission on the field size, measured at the barrier, for 6 MV and 10 MV beams. An analytical fitting formula is provided for the field size dependence. For field sizes greater than about 150 cm in side length, the field size dependence is minimal. For field sizes less than about 100 cm, the transmission declines rapidly as the field size decreases.


Assuntos
Filtração , Aceleradores de Partículas , Humanos , Espalhamento de Radiação , Fótons , Dosagem Radioterapêutica
4.
J Med Phys ; 46(2): 105-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566290

RESUMO

INTRODUCTION: Medical physics guidelines stress the importance of radiation-imaging coincidence, especially for stereotactic treatments. However, multi-energy linear accelerators may only allow a single imaging isocenter. A procedure was developed to simultaneously optimize radiation-imaging isocenter coincidence for all linac photon energies on a Versa HD. MATERIALS AND METHODS: First, the radiation beam center of each energy was adjusted to match the collimator rotation axis using a novel method that combined ion chamber measurements with a modified Winston-Lutz (WL) test using images only at gantry, couch, and collimator angles of 0°. With all energies properly steered, an 8-field WL test was performed to determine average linac isocenter position across all energies, gantry, and collimator angles. Lasers and the kV imaging isocenter were calibrated to the average linac isocenter of all photon energies. Finally, A 12-field WL test consisting of gantry, couch, and collimator rotations was used to adjust the couch rotation axis to the average linac isocenter, thereby minimizing overall radiation-imaging isocentricity of the system. RESULTS: Using this method, the beam centers were calibrated within 0.10 mm of collimator rotation axis, and linac isocenter coincidence was within 0.20 mm for all energies. Couch isocenter coincidence was adjusted within 0.20 mm of average linac isocenter. Average radiation-imaging isocentricity for all energies was 0.89 mm (0.80-0.98 mm) for a single imaging isocenter. CONCLUSION: This work provides a method to adjust radiation-imaging coincidence within 1.0 mm for all energies on Elekta's Versa HD.

5.
Technol Cancer Res Treat ; 20: 15330338211038490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490809

RESUMO

Purpose: In this study, we investigate linac volumetric-modulated arc therapy (VMAT) planning strategies for bilateral hip prostheses prostate patients with respect to plan quality and deliverability, while limiting entrance dose to the prostheses. Methods: Three VMAT plans were retrospectively created for 20 patients: (1) partial arcs (PA), (2) 2 full arcs optimized with 500 cGy max prostheses dose (MD), and (3) 2 full arcs optimized with max dose-volume histogram (DVH) constraint of 500 cGy to 10% prostheses volume (MDVH). PA techniques contained 6 PA with beam angles that avoid entering each prosthesis. For each patient, other than prostheses constraints, the same Pinnacle VMAT optimization objectives were used. Plans were normalized with PTV D95% = 79.2 Gy prescription dose. Organ-at-risk DVH metrics, monitor units (MUs), conformality, gradient, and homogeneity indices were evaluated for each plan. Mean entrance prosthesis dose was determined in Pinnacle by converting each arc into static beams and utilizing only control points traversing each prosthesis. Plan deliverability was evaluated with SunNuclear ArcCheck measurements (gamma criteria 3%/2 mm) on an Elekta machine. Results: MD and MDVH had similar dosimetric quality, both improved DVH metrics for rectum and bladder compared to PA. Plan complexities among all plans were similar (average MUs: 441-518). Conformality, homogeneity, and gradient indices were significantly improved in MD and MDVH versus PA (P < .001). Gamma pass rates for MD (99.0 ± 1.2%) and MDVH (99.2 ± 0.99%) were comparable. A significant difference over PA was observed (96.8 ± 1.6%, P < .001). Field-by-field analysis demonstrated 12/20 PA plans resulted in fields with pass rates <95% versus 1/20 plans for MD and none for MDVH. Cumulative mean entrance doses to each prosthesis were 62.9 ± 17.7 cGy for MD plans and 83.4 ± 27.5 cGy for MDVH plans. Conclusion: MD and MDVH plans had improved dosimetric quality and deliverability over PA plans with minimal entrance doses (∼1% of prescription) to each prosthesis and are an improved alternative for bilateral prostheses prostate patients.


Assuntos
Prótese de Quadril , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomada de Decisão Clínica , Diagnóstico por Imagem , Gerenciamento Clínico , Humanos , Masculino , Órgãos em Risco , Neoplasias da Próstata/complicações , Neoplasias da Próstata/diagnóstico , Radiometria , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem
6.
J Appl Clin Med Phys ; 22(4): 108-114, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33756044

RESUMO

PURPOSE: Brainlab's Elements Multiple Brain Mets SRS (MBMS) is a dedicated treatment planning system for single-isocenter multi-target (SIMT) cranial stereotactic radiosurgery (SRS) treatments. The purpose of this study is to present the commissioning experience of MBMS on an Elekta Versa HD. METHODS: MBMS was commissioned for 6 X, 6 FFF, and 10 FFF. Beam data collected included: output factors, percent depth doses (PDDs), diagonal profiles, collimator transmission, and penumbra. Beam data were processed by Brainlab and resulting parameters were entered into the planning system to generate the beam model. Beam model accuracy was verified for simple fields. MBMS plans were created on previously treated cranial SRS patient data sets. Plans were evaluated using Paddick inverse conformity (ICI), gradient indices (GI), and cumulative volume of brain receiving 12 Gy. Dosimetric accuracy of the MBMS plans was verified using microDiamond, Gafchromic film, and SRS Mapcheck measurements of absolute dose and dose profiles for individual targets. Finally, an end-to-end (E2E) test was performed with a MR-CT compatible phantom to validate the accuracy of the simulation-to-delivery process. RESULTS: For square fields, calculated scatter factors were within 1.0% of measured, PDDs were within 0.5% past dmax, and diagonal profiles were within 0.5% for clinically relevant off-axis distances (<10 cm). MBMS produced plans with ICIs < 1.5 and GIs < 5.0 for targets > 10 mm. Average point doses of the MBMS plans, measured by microDiamond, were within 0.31% of calculated (max 2.84%). Average per-field planar pass rates were 98.0% (95.5% minimum) using a 2%/1 mm/10% threshold relative gamma analysis. E2E point dose measurements were within 1.5% of calculated and Gafchromic film pass rates were 99.6% using a 5%/1 mm/10% threshold gamma analysis. CONCLUSION: The experience presented can be used to aid the commissioning of the Versa HD in the Brainlab MBMS treatment planning system, to produce safe and accurate SIMT cranial SRS treatments.


Assuntos
Radiocirurgia , Humanos , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
Med Dosim ; 44(1): 61-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29571934

RESUMO

We conducted a multi-institutional assessment of a recently developed end-to-end monthly quality assurance (QA) protocol for external beam radiation therapy treatment chains. This protocol validates the entire treatment chain against a baseline to detect the presence of complex errors not easily found in standard component-based QA methods. Participating physicists from 3 institutions ran the end-to-end protocol on treatment chains that include Imaging and Radiation Oncology Core (IROC)-credentialed linacs. Results were analyzed in the form of American Association of Physicists in Medicine (AAPM) Task Group (TG)-119 so that they may be referenced by future test participants. Optically stimulated luminescent dosimeter (OSLD), EBT3 radiochromic film, and A1SL ion chamber readings were accumulated across 10 test runs. Confidence limits were calculated to determine where 95% of measurements should fall. From calculated confidence limits, 95% of measurements should be within 5% error for OSLDs, 4% error for ionization chambers, and 4% error for (96% relative gamma pass rate) radiochromic film at 3% agreement/3 mm distance to agreement. Data were separated by institution, model of linac, and treatment protocol (intensity-modulated radiation therapy [IMRT] vs volumetric modulated arc therapy [VMAT]). A total of 97% of OSLDs, 98% of ion chambers, and 93% of films were within the confidence limits; measurements were found outside these limits by a maximum of 4%, < 1%, and < 1%, respectively. Data were consistent despite institutional differences in OSLD reading equipment and radiochromic film calibration techniques. Results from this test may be used by clinics for data comparison. Areas of improvement were identified in the end-to-end protocol that can be implemented in an updated version. The consistency of our data demonstrates the reproducibility and ease-of-use of such tests and suggests a potential role for their use in broad end-to-end QA initiatives.


Assuntos
Protocolos Clínicos , Dosimetria por Luminescência Estimulada Opticamente , Radioterapia de Intensidade Modulada/normas , Humanos
8.
J Appl Clin Med Phys ; 19(5): 724-732, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29978546

RESUMO

PURPOSE: Data errors caught late in treatment planning require time to correct, resulting in delays up to 1 week. In this work, we identify causes of data errors in treatment planning and develop a software tool that detects them early in the planning workflow. METHODS: Two categories of errors were studied: data transfer errors and TPS errors. Using root cause analysis, the causes of these errors were determined. This information was incorporated into a software tool which uses ODBC-SQL service to access TPS's Postgres and Mosaiq MSSQL databases for our clinic. The tool then uses a read-only FTP service to scan the TPS unix file system for errors. Detected errors are reviewed by a physicist. Once confirmed, clinicians are notified to correct the error and educated to prevent errors in the future. Time-cost analysis was performed to estimate the time savings of implementing this software clinically. RESULTS: The main errors identified were incorrect patient entry, missing image slice, and incorrect DICOM tag for data transfer errors and incorrect CT-density table application, incorrect image as reference CT, and secondary image imported to incorrect patient for TPS errors. The software has been running automatically since 2015. In 2016, 84 errors were detected with the most frequent errors being incorrect patient entry (35), incorrect CT-density table (17), and missing image slice (16). After clinical interventions to our planning workflow, the number of errors in 2017 decreased to 44. Time savings in 2016 with the software is estimated to be 795 h. This is attributed to catching errors early and eliminating the need to replan cases. CONCLUSIONS: New QA software detects errors during planning, improving the accuracy and efficiency of the planning process. This important QA tool focused our efforts on the data communication processes in our planning workflow that need the most improvement.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Bases de Dados Factuais , Humanos , Software , Fluxo de Trabalho
9.
J Appl Clin Med Phys ; 17(3): 190-202, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167277

RESUMO

We investigate the relationship between the various parameters in the Monaco MLC model and dose calculation accuracy for an Elekta Agility MLC. The vendor-provided MLC modeling procedure - completed first with external vendor participation and then exclusively in-house - was used in combination with our own procedures to investigate several sets of MLC modeling parameters to determine their effect on dose distributions and point-dose measurements. Simple plans provided in the vendor procedure were used to elucidate specific mechanical characteristics of the MLC, while ten complex treatment plans - five IMRT and five VMAT - created using TG-119-based structure sets were used to test clinical dosimetric effects of particular parameter choices. EDR2 film was used for the vendor fields to give high spatial resolution, while a combination of MapCHECK and ion chambers were used for the in-house TG-119-based proced-ures. The vendor-determined parameter set provided a reasonable starting point for the MLC model and largely delivered acceptable gamma pass rates for clinical plans - including a passing external evaluation using the IROC H&N phantom. However, the vendor model did not provide point-dose accuracy consistent with that seen in other treatment systems at our center. Through further internal testing it was found that there existed many sets of MLC parameters, often at opposite ends of their allowable ranges, that provided similar dosimetric characteristics and good agreement with planar and point-dose measurements. In particular, the leaf offset and tip leakage parameters compensated for one another if adjusted in opposite directions, which provided a level curve of acceptable parameter sets across all plans. Interestingly, gamma pass rates of the plans were less dependent upon parameter choices than point-dose measurements, suggesting that MLC modeling using only gamma evaluation may be generally an insufficient approach. It was also found that exploring all parameters of the very robust MLC model to find the best match to the vendor-provided QA fields can reduce the pass rates of the TG-119-based clinical distributions as compared to simpler models. A wide variety of parameter sets produced MLC models capable of meeting RPC passing criteria for their H&N IMRT phantom. The most accurate models were achievable using a combination of vendor-provided and in-house procedures. The potential existed for an over-modeling of the Agility MLC in an effort to obtain the fine structure of certain quality assurance fields, which led to a reduction in agreement between calculation and measurement of more typical clinical dose distributions.


Assuntos
Modelos Teóricos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Humanos , Mônaco , Dosagem Radioterapêutica
10.
Med Phys ; 43(5): 2476, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147358

RESUMO

PURPOSE: PTW's Octavius 1000 SRS array performs IMRT quality assurance (QA) measurements with liquid-filled ionization chambers (LICs) to allow closer detector spacing and higher resolution, compared to air-filled QA devices. However, reduced ion mobility in LICs relative to air leads to increased ion recombination effects and reduced collection efficiencies that are dependent on Linac pulse frequency and pulse dose. These pulse parameters are variable during an IMRT delivery, which affects QA results. In this study, (1) 1000 SRS collection efficiencies were measured as a function of pulse frequency and pulse dose, (2) two methods were developed to correct changes in collection efficiencies during IMRT QA measurements, and the effects of these corrections on QA pass rates were compared. METHODS: To obtain collection efficiencies, the OCTAVIUS 1000 SRS was used to measure open fields of varying pulse frequency, pulse dose, and beam energy with results normalized to air-filled chamber measurements. Changes in ratios of 1000 SRS to chamber measured dose were attributed to changing collection efficiencies, which were then correlated to pulse parameters using regression analysis. The usefulness of the derived corrections was then evaluated using 6 MV and 10FFF SBRT RapidArc plans delivered to the OCTAVIUS 4D system using a TrueBeam (Varian Medical Systems) linear accelerator equipped with a high definition multileaf collimator. For the first correction, matlab software was developed that calculates pulse frequency and pulse dose for each detector, using measurement and DICOM RT Plan files. Pulse information is converted to collection efficiency, and measurements are corrected by multiplying detector dose by ratios of calibration to measured collection efficiencies. For the second correction the MU/min in the daily 1000 SRS calibration was chosen to match the average MU/min of the volumetric modulated arc therapy plan. Effects of the two corrections on QA results were examined by performing 3D gamma analysis comparing predicted to measured dose, with and without corrections. RESULTS: Collection efficiencies correlated linearly to pulse dose, while correlations with pulse frequency were less defined, generally increasing as pulse frequency decreased. After complex matlab corrections, average 3D gamma pass rates improved by [0.07%,0.40%,1.17%] for 6 MV and [0.29%,1.40%,4.57%] for 10FFF using [3%/3 mm,2%/2 mm,1%/1 mm] criteria. Maximum changes in gamma pass rates were [0.43%,1.63%,3.05%] for 6 MV and [1.00%,4.80%,11.2%] for 10FFF using [3%/3 mm,2%/2 mm,1%/1 mm] criteria. On average, pass rates of simple daily calibration corrections were within 1% of complex matlab corrections. CONCLUSIONS: OCTAVIUS 1000 SRS ion recombination effects have little effect on 6 MV measurements. However, the effect could potentially be clinically significant for higher pulse dose unflattened beams when using tighter gamma tolerances, especially when small aperture sizes are used, as is common for SRS/SBRT. In addition, ion recombination effects are strongly correlated to changing MU/min, therefore MU/min used in daily 1000 SRS calibrations should be matched to the expected average MU/min of the IMRT plan.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/instrumentação , Radiometria/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Calibragem , Imagens de Fantasmas , Software
11.
J Appl Clin Med Phys ; 17(2): 497-510, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074453

RESUMO

A comprehensive end-to-end test for head and neck IMRT treatments was developed using a custom phantom designed to utilize multiple dosimetry devices. Initial end-to-end test and custom H&N phantom were designed to yield maximum information in anatomical regions significant to H&N plans with respect to: (i) geometric accuracy, (ii) dosimetric accuracy, and (iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. The phantom was imaged on a CT simulator and the CT was reconstructed with 1 mm slice thickness and imported into Varian's Eclipse treatment planning system. OARs and the PTV were contoured with the aid of Smart Segmentation. A clinical template was used to create an eight-field IMRT plan and dose was calculated with heterogeneity correction on. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end-to-end results were measured using film, ion chambers, and optically stimulated luminescent dosimeters (OSLDs). Ion chamber dose measurements were compared to the treatment planning system. Films were analyzed with FilmQA Pro using composite gamma index. OSLDs were read with a MicroStar reader using a custom calibration curve. Final phantom design incorporated two axial and one coronal film planes with 18 OSLD locations adjacent to those planes as well as four locations for IMRT ionization chambers below inferior film plane. The end-to-end test was consistently reproducible, resulting in average gamma pass rate greater than 99% using 3%/3 mm analysis criteria, and average OSLD and ion chamber measurements within 1% of planned dose. After initial calibration of OSLD and film systems, the end-to-end test provides next-day results, allowing for integration in routine clinical QA. Preliminary trials have demonstrated that our end-to-end is a reproducible QA tool that enables the ongoing evaluation of dosimetric and geometric accuracy of clinical head and neck treatments.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Cabeça/efeitos da radiação , Pescoço/efeitos da radiação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
12.
Med Phys ; 43(3): 1035-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936691

RESUMO

PURPOSE: Accurate dose measurements in small fields require correction factors when sufficient CPE is not present inside of the field. These factors adjust for perturbation, volume averaging, and other effects; as such, they are field size, detector, and phantom dependent. In this work, Monte Carlo (MC) methods were used to calculate correction factors for PTW's microDiamond detector in Elekta's Gamma Knife Model-C unit. These correction factors allow for accurate measurement of output factors-even in the smallest field sizes where CPE is not present. METHODS: The small field correction factors were calculated as kQclin,Qmsr (fclin,fmsr) correction factors according to the Alfonso formalism. The MC model of the Gamma Knife was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes. Efforts were made to validate the MC model against experimental measurements. Using the model, field output factors and measurement ratios for each of the four helmet sizes were simulated for an ABS plastic phantom and validated against film measurements, detector measurements, and treatment planning system (TPS) data. Once validated against the available ABS phantom, the model was applied to a more waterlike solid water phantom. Using MC results from the solid water phantom, the final k correction factors were determined relative to the machine specific reference field-the 18 mm helmet, which is the largest field size available on the unit. RESULTS: When validating against experimental measurements using the ABS phantom, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1% for all helmet sizes. kQclin,Qmsr (fclin,fmsr) for the PTW microDiamond in the solid water phantom approached unity to within 0.4% ± 1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2% ± 1.7%, resulting in a kQ4mm,Q18mm (f4mm,f18mm) of 0.969. CONCLUSIONS: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond over-responds in the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes.


Assuntos
Diamante , Método de Monte Carlo , Radiocirurgia/instrumentação , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Incerteza
13.
J Appl Clin Med Phys ; 14(3): 4214, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23652253

RESUMO

Our institution delivers TBI using a modified Theratron 780 60Co unit. Due to limitations of our treatment planning system in calculating dose for this treatment, we have developed a fast Monte Carlo code to calculate dose distributions within the patient. The algorithm is written in C and uses voxel density information from CT images to calculate dose in heterogeneous media. To test the algorithm, film-based dose measurements were made separately in a simple water phantom with a high-density insert and a RANDO phantom and then compared to doses calculated by the Monte Carlo algorithm. In addition, a separate simulation in GEANT4 was run for the RANDO phantom and compared to both film and the in-house simulation. All results were analyzed using RIT113 film analysis software. Simulations in the water phantom accurately predict the depth of maximum dose in the phantom at 0.5 cm. The measured PDD along the central axis of the beam closely matches the PDD generated from the Monte Carlo code, deviating on average by only 3% along the depth of the water phantom. Dose measured at planes inside the high-density insert had a mean difference of 4.9% on cross-profile measurement. In the RANDO phantom, gamma pass rates vary between 91% and 99% at 3 mm, 3%, and were >99% at 5 mm, 5% for the four film planes measured. Profiles taken across the film and both simulations resulted in mean relative differences of < 2% for all profiles in each slice measured. The Monte Carlo algorithm presented here is potentially a viable method for calculating dose distributions delivered in TBI treatments at our center. While not yet refined enough to be the primary method of treatment planning, the algorithm at its current resolution determines the dose distribution for one patient within a few hours, and provides clinically useful information in planning TBI. With appropriate optimization, the Monte Carlo method presented here could potentially be implemented as a first-line treatment planning option for 60Co TBI.


Assuntos
Radioisótopos de Cobalto/uso terapêutico , Método de Monte Carlo , Neoplasias/radioterapia , Teleterapia por Radioisótopo , Planejamento da Radioterapia Assistida por Computador , Irradiação Corporal Total , Algoritmos , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
14.
Med Phys ; 38(4): 1779-84, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21626912

RESUMO

PURPOSE: The report issued by AAPM Task Group No. 119 outlined a procedure for evaluating the effectiveness of IMRT commissioning. The procedure involves measuring gamma pass-rate indices for IMRT plans of standard phantoms and determining if the results fall within a confidence limit set by assuming normally distributed data. As stated in the TG report, the assumption of normally distributed gamma pass rates is a convenient approximation for commissioning purposes, but may not accurately describe the data. Here the authors attempt to better describe gamma pass-rate data by fitting it to different distributions. The authors then calculate updated confidence limits using those distributions and compare them to those derived using TG No. 119 method. METHODS: Gamma pass-rate data from 111 head and neck patients are fitted using the TG No. 119 normal distribution, a truncated normal distribution, and a Weibull distribution. Confidence limits to 95% are calculated for each and compared. A more general analysis of the expected differences between the TG No. 119 method of determining confidence limits and a more time-consuming curve fitting method is performed. RESULTS: The TG No. 119 standard normal distribution does not fit the measured data. However, due to the small range of measured data points, the inaccuracy of the fit has only a small effect on the final value of the confidence limits. The confidence limits for the 111 patient plans are within 0.1% of each other for all distributions. The maximum expected difference in confidence limits, calculated using TG No. 119's approximation and a truncated distribution, is 1.2%. CONCLUSIONS: A three-parameter Weibull probability distribution more accurately fits the clinical gamma index pass-rate data than the normal distribution adopted by TG No. 119. However, the sensitivity of the confidence limit on distribution fit is low outside of exceptional circumstances.


Assuntos
Física , Radioterapia de Intensidade Modulada/normas , Sociedades Científicas/normas , Intervalos de Confiança , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...