Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(17): 21032-21039, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266617

RESUMO

Endocrine disruptors represent risks to aquatic ecosystem and humans, and are commonly detected in surface water. Photochemical treatments can be used to remove 17ß-estradiol (E2), but few studies have analyzed the kinetics, intermediates, and 17ß-estradiol degradation pathways in natural matrices. In this study, the photochemical behavior of E2 under ultraviolet irradiation (UVC, 254 nm) associated with oxidants (H2O2 or O3) or photocatalyst (TiO2) was investigated to evaluate the degradation potential and the transformation pathway in a natural surface water matrix. Additionally, computational modeling analyses with Ecological Structure Activity Relationships (ECOSAR) software were performed to predict the toxicity from the E2 and its transformation byproducts. E2 degradation kinetics showed adjusted to the pseudo-first-order kinetic model, being kUV/O3 > kUV/TiO2 > kUV/H2O2 > kUV. Eight transformation byproducts were identified by liquid chromatography with time-of-flight mass spectrometry (HPLC/TOF-MS) in natural surface water samples. These byproducts formed as the result of opening the aromatic ring and adding the hydroxyl radical. The E2 degradation pathway was proposed based on the byproducts identified in this study and in previous studies, suggesting the formation of aliphatic and hydroxylated byproducts. E2 treatment presented both very toxic and not harmful byproducts.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Ecossistema , Estradiol , Humanos , Cinética , Oxirredução , Estresse Oxidativo , Fotólise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...