Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2842: 225-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012599

RESUMO

Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.


Assuntos
Cromatina , Epigênese Genética , Genes Reporter , Cromatina/metabolismo , Cromatina/genética , Humanos , Citometria de Fluxo/métodos , Histonas/metabolismo , Epigenômica/métodos , Regulação da Expressão Gênica
2.
Redox Biol ; 61: 102641, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842241

RESUMO

At physiological levels, the trace element selenium plays a key role in redox reactions through the incorporation of selenocysteine in antioxidant enzymes. Selenium has also been evaluated as a potential anti-cancer agent, where selenium nanoparticles have proven effective, and are well tolerated in vivo at doses that are toxic as soluble Se. The use of such nanoparticles, coated with either serum albumin or the naturally occurring alkaline polysaccharide chitosan, also serves to enhance biocompatibility and bioavailability. Here we demonstrate a novel role for selenium in regulating histone methylation in ovarian cancer cell models treated with inorganic selenium nanoparticles coated with serum albumin or chitosan. As well as inducing thioredoxin reductase expression, ROS activity and cancer cell cytotoxicity, coated nanoparticles caused significant increases in histone methylation. Specifically, selenium nanoparticles triggered an increase in the methylation of histone 3 at lysines K9 and K27, histone marks involved in both the activation and repression of gene expression, thus suggesting a fundamental role for selenium in these epigenetic processes. This direct function was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2 (H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone methylation. This novel role for selenium supports a distinct function in histone methylation that occurs due to a decrease in S-adenosylhomocysteine, an endogenous inhibitor of lysine methyltransferases, the metabolic product of methyl-group transfer from S-adenosylmethionine in the one-carbon metabolism pathway. These observations provide important new insights into the action of selenium nanoparticles. It is now important to consider both the classic antioxidant and novel histone methylation effects of this key redox element in its development in cancer therapy and other applications.


Assuntos
Quitosana , Selênio , Histonas/metabolismo , Metilação , Selênio/metabolismo , Lisina/metabolismo , S-Adenosil-Homocisteína/metabolismo , Antioxidantes/metabolismo , Quitosana/metabolismo , Histona-Lisina N-Metiltransferase/genética
3.
Nucleic Acids Res ; 49(8): 4350-4370, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33823549

RESUMO

The lysine specific demethylase 1 (LSD1) plays a pivotal role in cellular differentiation by regulating the expression of key developmental genes in concert with different coregulatory proteins. This process is impaired in different cancer types and incompletely understood. To comprehensively identify functional coregulators of LSD1, we established a novel tractable fluorescent reporter system to monitor LSD1 activity in living cells. Combining this reporter system with a state-of-the-art multiplexed RNAi screen, we identify the DEAD-box helicase 19A (DDX19A) as a novel coregulator and demonstrate that suppression of Ddx19a results in an increase of R-loops and reduced LSD1-mediated gene silencing. We further show that DDX19A binds to tri-methylated lysine 27 of histone 3 (H3K27me3) and it regulates gene expression through the removal of transcription promoting R-loops. Our results uncover a novel transcriptional regulatory cascade where the downregulation of genes is dependent on the LSD1 mediated demethylation of histone H3 lysine 4 (H3K4). This allows the polycomb repressive complex 2 (PRC2) to methylate H3K27, which serves as a binding site for DDX19A. Finally, the binding of DDX19A leads to the efficient removal of R-loops at active promoters, which further de-represses LSD1 and PRC2, establishing a positive feedback loop leading to a robust repression of the target gene.


Assuntos
Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Histona Desmetilases/genética , Neoplasias/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Estruturas R-Loop/genética , Animais , Sítios de Ligação , Elementos Facilitadores Genéticos , Genes Reporter , Histonas/metabolismo , Homeostase , Humanos , Metilação , Camundongos , Células NIH 3T3 , Proteínas de Transporte Nucleocitoplasmático/genética , Regiões Promotoras Genéticas , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
4.
Epigenetics Chromatin ; 11(1): 4, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370823

RESUMO

BACKGROUND: Protein posttranslational modifications (PTMs) occur broadly in the human proteome, and their biological outcome is often mediated indirectly by reader proteins that specifically bind to modified proteins and trigger downstream effects. Particularly, many lysine methylation sites among histone and nonhistone proteins have been characterized; however, the list of readers associated with them is incomplete. RESULTS: This study introduces a modified yeast three-hybrid system (Y3H) to screen for methyllysine readers. A lysine methyltransferase is expressed together with its target protein or protein domain functioning as bait, and a human cDNA library serves as prey. Proof of principle was established using H3K9me3 as a bait and known H3K9me3 readers like the chromodomains of CBX1 or MPP8 as prey. We next conducted an unbiased screen using a library composed of human-specific open reading frames. It led to the identification of already known lysine methylation-dependent readers and of novel methyllysine reader candidates, which were further confirmed by co-localization with H3K9me3 in human cell nuclei. CONCLUSIONS: Our approach introduces a cost-effective method for screening reading domains binding to histone and nonhistone proteins which is not limited by expression levels of the candidate reading proteins. Identification of already known and novel H3K9me3 readers proofs the power of the Y3H assay which will allow for proteome-wide screens of PTM readers.


Assuntos
Proteínas Cromossômicas não Histona/química , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/química , Fosfoproteínas/química , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , Epigênese Genética , Biblioteca Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Metilação , Camundongos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA