Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e14665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778140

RESUMO

We report here the first dinosaur skeletal material described from the marine Fox Hills Formation (Maastrichtian) of western South Dakota. The find consists of two theropod pedal phalanges: one recovered from the middle part of the Fairpoint Member in Meade County, South Dakota; and the other from the Iron Lightning Member in Ziebach County, South Dakota. Comparison with pedal phalanges of other theropods suggests strongly that the Fairpoint specimen is a right pedal phalanx, possibly III-2, from a large ornithomimid. The Iron Lightning specimen we cautiously identify as an ornithomimid left pedal phalanx II-2. The Fairpoint bone comes from thinly bedded and cross-bedded marine sandstones containing large hematitic concretions and concretionary horizons. Associated fossils include osteichthyan teeth, fin spines and otoliths, and abundant teeth of common Cretaceous nearshore and pelagic chondrichthyans. Leaf impressions and other plant debris, blocks of fossilized wood, and Ophiomorpha burrows are also common. The Iron Lightning bone comes from a channel deposit composed of fine to coarse sandstone beds, some of which contain bivalves, and a disseminated assemblage of mammal teeth, chondrichthyan teeth, and fragmentary dinosaur teeth and claws. We interpret the depositional environment of the two specimens as marginal marine. The Fairpoint bone derives from a nearshore foreset setting, above wave base subject to tidal flux and storm activity. The Iron Lightning specimen comes from a topset channel infill probably related to deposition on a tidal flat or associated coastal setting. The taphonomic history and ages of the two bones differ. Orthogonal cracks in the cortical bone of the Fairpoint specimen suggest post-mortem desiccation in a dryland coastal setting prior to transport and preservation in the nearby nearshore setting described above. The pristine surface of the Iron Lightning specimen indicates little transport before incorporation into the channel deposit in which it was found. The Fairpoint bone bed most probably lies within the Hoploscaphites nicolletii Ammonite Zone of the early late Maastrichtian, and would therefore have an approximate age of 69 Ma. The Iron Lightning bone is from the overlying H. nebrascensis Ammonite Zone, and is thus about one million years younger.


Assuntos
Dinossauros , Dente , Animais , South Dakota , Osso e Ossos , Fósseis , Dinossauros/anatomia & histologia , Mamíferos
2.
PeerJ ; 9: e11013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976955

RESUMO

Tyrannosaurids are hypothesized to be gregarious, possibly parasocial carnivores engaging in cooperative hunting and extended parental care. A tyrannosaurid (cf. Teratophoneus curriei) bonebed in the late Campanian age Kaiparowits Formation of southern Utah, nicknamed the Rainbows and Unicorns Quarry (RUQ), provides the first opportunity to investigate possible tyrannosaurid gregariousness in a taxon unique to southern Laramidia. Analyses of the site's sedimentology, fauna, flora, stable isotopes, rare earth elements (REE), charcoal content and taphonomy suggest a complex history starting with the deaths and transport of tyrannosaurids into a peri-fluvial, low-energy lacustrine setting. Isotopic and REE analyses of the fossil material yields a relatively homogeneous signature indicating the assemblage was derived from the same source and represents a fauna living in a single ecospace. Subsequent drying of the lake and fluctuating water tables simultaneously overprinted the bones with pedogenic carbonate and structurally weakened them through wet-dry cycling. Abundant charcoal recovered from the primary bone layer indicate a low temperature fire played a role in the site history, possibly triggering an avulsion that exhumed and reburied skeletal material on the margin of a new channel with minimal transport. Possible causes of mortality and concentration of the tyrannosaurids include cyanobacterial toxicosis, fire, and flooding, the latter being the preferred hypothesis. Comparisons of the RUQ site with other North American tyrannosaur bonebeds (Dry Island-Alberta; Daspletosaurus horneri-Montana) suggest all formed through similar processes. Combined with ichnological evidence, these tyrannosaur mass-burial sites could be part of an emerging pattern throughout Laramidia reflecting innate tyrannosaurid behavior such as habitual gregariousness.

3.
Proc Natl Acad Sci U S A ; 112(51): 15562-7, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26630003

RESUMO

Ammonites are among the best-known fossils of the Phanerozoic, yet their habitat is poorly understood. Three common ammonite families (Baculitidae, Scaphitidae, and Sphenodiscidae) co-occur with well-preserved planktonic and benthic organisms at the type locality of the upper Maastrichtian Owl Creek Formation, offering an excellent opportunity to constrain their depth habitats through isotopic comparisons among taxa. Based on sedimentary evidence and the micro- and macrofauna at this site, we infer that the 9-m-thick sequence was deposited at a paleodepth of 70-150 m. Taxa present throughout the sequence include a diverse assemblage of ammonites, bivalves, and gastropods, abundant benthic foraminifera, and rare planktonic foraminifera. No stratigraphic trends are observed in the isotopic data of any taxon, and thus all of the data from each taxon are considered as replicates. Oxygen isotope-based temperature estimates from the baculites and scaphites overlap with those of the benthos and are distinct from those of the plankton. In contrast, sphenodiscid temperature estimates span a range that includes estimates of the planktonic foraminifera and of the warmer half of the benthic values. These results suggest baculites and scaphites lived close to the seafloor, whereas sphenodiscids sometimes inhabited the upper water column and/or lived closer to shore. In fact, the rarity and poorer preservation of the sphenodiscids relative to the baculites and scaphites suggests that the sphenodiscid shells may have only reached the Owl Creek locality by drifting seaward after death.


Assuntos
Evolução Biológica , Cefalópodes/química , Ecossistema , Fósseis , Animais , Isótopos de Carbono/análise , Cefalópodes/classificação , Foraminíferos/química , Foraminíferos/classificação , Moluscos/química , Moluscos/classificação , Isótopos de Oxigênio/análise , Paleontologia , Plâncton/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA