Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376048

RESUMO

Supersaturating drug delivery systems such as solid dispersions of a drug in a polymer are frequently used in pharmaceutical development to enable oral delivery of poorly soluble drugs. In this study, the influence of the concentration and molecular weight of polyvinylpyrrolidone (PVP) on the precipitation inhibition of the poorly soluble drugs albendazole, ketoconazole and tadalafil is investigated to expand the understanding of the mechanism of PVP as a polymeric precipitation inhibitor. A three-level full-factorial design was used to delineate the influence of polymer concentration and viscosity of the dissolution medium on precipitation inhibition. Solutions of PVP K15, K30, K60 or K120 at concentrations of 0.1, 0.5 and 1% (w/v), as well as isoviscous solutions of PVP of increasing molecular weight, were prepared. Supersaturation of the three model drugs was induced by the use of a solvent-shift method. Precipitation of the three model drugs from supersaturated solutions in the absence and presence of polymer was investigated by the use of a solvent-shift method. Time-concentration profiles of the respective drugs in the absence and presence of polymer pre-dissolved in the dissolution medium were obtained by the use of a µDISS Profiler™ to determine the onset of nucleation and the precipitation rate. Multiple linear regression was used to evaluate the hypothesis that precipitation inhibition is influenced by the PVP concentration (i.e., the number of repeat units of the polymer) and the medium viscosity of the polymer for the three model drugs. This study showed that an increased concentration of PVP (i.e., an increased concentration of the PVP repeat units, independent of the molecular weight of the polymer) in solution increased the onset of nucleation and decreased the precipitation rate of the respective drugs during supersaturation, which can be explained by an increase in molecular interactions between the drug and polymer with increasing concentrations of polymer. In contrast, the medium viscosity had no significant influence on the onset of the nucleation and precipitation rate of the drugs, which can be explained by solution viscosity having a negligible effect on the rate of drug diffusion from bulk solution to the crystal nuclei. In conclusion, the precipitation inhibition of the respective drugs is influenced by the concentration of PVP, i.e., by molecular interactions between the drug and polymer. In contrast, the molecular mobility of the drug in solution, i.e., the medium viscosity, has no influence on the precipitation inhibition of the drugs.

2.
Int J Pharm ; 629: 122391, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379397

RESUMO

In this study, a new method to determine the solubility of crystalline drugs in (amorphous) polymers is proposed. The method utilizes annealing of supersaturated amorphous solid dispersions to achieve equilibrium between dissolved and recrystallized drug. By measuring the enthalpy of melting and mixing (Hm+mix) of the recrystallized drug, the equilibrium solubility of the drug in the polymer at the annealing temperature is determined. The equilibrium solubilities at these elevated temperatures were used to extrapolate to room temperature using the Flory-Huggins model. The new Hm+mix method showed solubility predictions in line with the melting point depression (MPD) and recrystallization (RC) methods for indomethacin (IMC) -polyvinylpyrrolidone (PVP). For IMC-hydroxypropyl methylcellulose (HPMC), the MPD method plateaued rapidly, leaving only one usable data point. The RC method showed large variations in the solubility predictions possibly due to a narrow glass transition temperature (Tg) window or inaccurate Tg determination. In contrast, the new Hm+mix method showed robust solubility prediction over the entire annealing temperature range with low variation and narrow error margins after extrapolation for both drug-polymer systems. The new Hm+mix method was able to accurately determine the drug-polymer solubility of IMC-HPMC, showing promise as a new tool to determine the solubility of problematic drug-polymer systems.


Assuntos
Polímeros , Povidona , Solubilidade , Polímeros/química , Cristalização/métodos , Povidona/química , Termodinâmica , Indometacina/química , Derivados da Hipromelose , Varredura Diferencial de Calorimetria
3.
Eur J Pharm Biopharm ; 180: 170-180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191869

RESUMO

In the current study, the concept of multiparticulate drug delivery systems (MDDS) was applied to tablets intended for the amorphisation of supersaturated granular ASDs in situ, i.e. amorphisation within the final dosage form by microwave irradiation. The MDDS concept was hypothesised to ensure geometric and structural stability of the dosage form and to improve the in vitro disintegration and dissolution characteristics. Granules were prepared in two sizes (small and large) containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) at a 50 % w/w drug load as well as sodium dihydrogen phosphate monohydrate as the microwave absorbing excipient. The granules were subsequently embedded in an extra-granular tablet phase composed of either the filler microcrystalline cellulose (MCC) or mannitol (MAN), as well as the disintegrant crospovidone and the lubricant magnesium stearate. The tensile strength and disintegration time were investigated prior to and after 10 min of microwave irradiation (800 and 1000 W) and the formed ASDs were characterised by X-ray powder diffraction and modulated differential scanning calorimetry. Additionally, the internal structure was elucidated by X-ray micro-Computed Tomography (XµCT) and, finally, the dissolution performance of selected tablets was investigated. The MDDS tablets displayed no geometrical changes after microwave irradiation, however, the tensile strength and disintegration time generally increased. Complete amorphisation of CCX was achieved only for the MCC-based tablets at a power input of 1000 W, while MAN-based tablets displayed partial amorphisation independent of power input. The complete amorphisation of CCX was associated with the fusion of individual ASD granules within the tablets, which negatively impacted the subsequent disintegration and dissolution performance. For these tablets, supersaturation was only observed after 60 min. On the other hand, the partially amorphised MDDS tablets displayed complete disintegration during the dissolution experiments, resulting in a fast onset of supersaturation within 5 min and an approx. 3.5-fold degree of supersaturation within the experimental timeframe (3 h). Overall, the MDDS concept was shown to potentially be a feasible dosage form for in situ amorphisation, however, there is still room for improvement to obtain a both fully amorphous and disintegrating system.


Assuntos
Química Farmacêutica , Povidona , Humanos , Química Farmacêutica/métodos , Microtomografia por Raio-X , Comprimidos/química , Povidona/química , Excipientes/química , Celecoxib/química , Manitol/química , Sistemas de Liberação de Medicamentos , Solubilidade
4.
Int J Pharm ; 626: 122115, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985526

RESUMO

This study investigated the ability of in situ amorphisation using microwave irradiation in order to prepare highly supersaturated ASDs, i.e. ASDs with drug loads higher than the saturation solubility in the polymer at ambient temperature. For this purpose, compacts containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone (PVP), polyvinylpyrrolidone-vinyl acetate copolymer (PVP/VA), or polyvinyl acetate (PVAc), were prepared at drug loads between 30 and 90 % w/w. Sodium dihydrogen phosphate (NaH2PO4) monohydrate was included in all compacts, as a source of water, to facilitate the dielectric heating of the compacts upon dehydration during microwave irradiation. After processing, the samples were analysed towards their solid state using X-ray powder diffraction (XRPD) and modulated differential scanning calorimetry (mDSC). Complete amorphisation of CCX was achieved across all the investigated polymers and with a maximal drug load of 90, 80, and 50 % w/w in PVP, PVP/VA, and PVAc, respectively. These drug loads corresponded to a 2.3-, 2.4-, and 10.0-fold supersaturation in the investigated polymers at ambient temperature. However, dissolution experiments with the in situ prepared ASDs in fasted state simulated intestinal fluid (FaSSIF), showed a lower initial drug release (0-2 h) compared to equivalent physical mixtures of crystalline CCX and polymers or crystalline CCX alone. The lower drug release rate was explained by the fusion of individual drug and polymer particles during microwave irradiation and, subsequently, a lack of disintegration of the monolithic ASDs. Nevertheless, supersaturation of CCX in FaSSIF was achieved with the in situ amorphised ASDs with PVP and PVP/VA, albeit only after 3-24 h. Overall, the present study confirmed that it is feasible to prepare supersaturated ASDs in situ. However, in the current experimental setup, the monolithic nature of the resulting ASDs is considered a limiting factor in the practical applicability of this preparation method, due to limited disintegration and the associated negative effect on the drug release.


Assuntos
Micro-Ondas , Povidona , Celecoxib/química , Polímeros/química , Polivinil , Povidona/química , Solubilidade , Água
5.
Int J Pharm ; 609: 121157, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34626795

RESUMO

Microwave-induced in situ amorphization is an emerging technology to tackle the persistent stability issue of amorphous solid dispersions (ASDs) during manufacture and storage. The aim of this study was to introduce new effective polymeric carriers with diverse properties to microwave-induced in situ amorphization and to better understand their functions in relation to the final dissolution performance of microwaved tablets. Tablets composed of indomethacin (IND) and different polymers were compacted, stored at 75% relative humidity for at least 1 week and microwaved at 1000 W to induce amorphization. A series of polymers, polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios displaying varyingproperties in functional groupratio, hygroscopicity, molecular weight (Mw), and glass transition temperature (Tg) of the polymer were used as model carriers. The results suggested that more than 90% of IND was amorphized after 20 mins microwaving in all 20% (w/w) drug loaded tablets except for IND:PVAc tablets presenting approx. 36% residual crystallinity. Among them, tablets composed of PVP/VA I-335 and PVP K30 achieved complete in situ amorphization upon microwaving. Further analysis indicated that the influencing factors, polymer Mw and Tg of moisture-plasticized polymer, played a major role in microwave-induced in situ amorphization. In in vitro dissolution study, ASDs containing PVP/VA I-535 with moderate hydrophilicity and 0.96 ± 1.92% IND residual crystallinity showed the most rapid and complete drug release among all formulations, presenting the most promising dissolution performance. Further study on the chemical stability of such formulation showed a statistically insignificant decrease of drug content after pre-conditioning and microwaving (P = 0.288 > 0.05).


Assuntos
Micro-Ondas , Polímeros , Celecoxib , Estabilidade de Medicamentos , Indometacina , Povidona , Solubilidade
6.
Pharmaceutics ; 13(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205754

RESUMO

In this study, laser-induced in situ amorphization (i.e., amorphization inside the final dosage form) of the model drug celecoxib (CCX) with six different polymers was investigated. The drug-polymer combinations were studied with regard to the influence of (i) the physicochemical properties of the polymer, e.g., the glass transition temperature (Tg) and (ii) the drug-polymer solubility on the rate and degree of in situ drug amorphization. Compacts were prepared containing 30 wt% CCX, 69.25 wt% polymer, 0.5 wt% lubricant, and 0.25 wt% plasmonic nanoparticles (PNs) and exposed to near-infrared laser radiation. Upon exposure to laser radiation, the PNs generated heat, which allowed drug dissolution into the polymer at temperatures above its Tg, yielding an amorphous solid dispersion. It was found that in situ drug amorphization was possible for drug-polymer combinations, where the temperature reached during exposure to laser radiation was above the onset temperature for a dissolution process of the drug into the polymer, i.e., TDStart. The findings of this study showed that the concept of laser-induced in situ drug amorphization is applicable to a range of polymers if the drug is soluble in the polymer and temperatures during the process are above TDStart.

7.
Molecules ; 26(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279377

RESUMO

Laser radiation has been shown to be a promising approach for in situ amorphization, i.e., drug amorphization inside the final dosage form. Upon exposure to laser radiation, elevated temperatures in the compacts are obtained. At temperatures above the glass transition temperature (Tg) of the polymer, the drug dissolves into the mobile polymer. Hence, the dissolution kinetics are dependent on the viscosity of the polymer, indirectly determined by the molecular weight (Mw) of the polymer, the solubility of the drug in the polymer, the particle size of the drug and the molecular size of the drug. Using compacts containing 30 wt% of the drug celecoxib (CCX), 69.25 wt% of three different Mw of polyvinylpyrrolidone (PVP: PVP12, PVP17 or PVP25), 0.25 wt% plasmonic nanoaggregates (PNs) and 0.5 wt% lubricant, the effect of the polymer Mw on the dissolution kinetics upon exposure to laser radiation was investigated. Furthermore, the effect of the model drug on the dissolution kinetics was investigated using compacts containing 30 wt% of three different drugs (CCX, indomethacin (IND) and naproxen (NAP)), 69.25 wt% PVP12, 0.25 wt% PN and 0.5 wt% lubricant. In perfect correlation to the Noyes-Whitney equation, this study showed that the use of PVP with the lowest viscosity, i.e., the lowest Mw (here PVP12), led to the fastest rate of amorphization compared to PVP17 and PVP25. Furthermore, NAP showed the fastest rate of amorphization, followed by IND and CCX in PVP12 due to its high solubility and small molecular size.


Assuntos
Anti-Inflamatórios não Esteroides/química , Celecoxib/química , Raios Infravermelhos , Nanopartículas/química , Povidona/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Celecoxib/administração & dosagem , Estabilidade de Medicamentos , Lasers , Viscosidade
8.
Mol Pharm ; 18(6): 2254-2262, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951909

RESUMO

Poor aqueous drug solubility represents a major challenge in oral drug delivery. A novel approach to overcome this challenge is drug amorphization inside a tablet, that is, on-demand drug amorphization. The amorphous form is a thermodynamically instable, disordered solid-state with increased dissolution rate and solubility compared to its crystalline counterpart. During on-demand drug amorphization, the drug molecularly disperses into a polymer to form an amorphous solid at elevated temperatures inside a tablet. This study investigates, for the first time, the utilization of photothermal plasmonic nanoparticles for on-demand drug amorphization as a new pharmaceutical application. For this, near-IR photothermal plasmonic nanoparticles were tableted together with a crystalline drug (celecoxib) and a polymer (polyvinylpyrrolidone). The tablets were subjected to a near-IR laser at different intensities and durations to study the rate of drug amorphization under each condition. During laser irradiation, the plasmonic nanoparticles homogeneously heated the tablet. The temperature was directly related to the rate and degree of amorphization. Exposure times as low as 180 s at 1.12 W cm-2 laser intensity with only 0.25 wt % plasmonic nanoparticles and up to 50 wt % drug load resulted in complete drug amorphization. Therefore, near-IR photothermal plasmonic nanoparticles are promising excipients for on-demand drug amorphization with laser irradiation.


Assuntos
Celecoxib/química , Composição de Medicamentos/métodos , Excipientes/efeitos da radiação , Lasers , Nanopartículas/efeitos da radiação , Composição de Medicamentos/instrumentação , Excipientes/química , Nanopartículas/química , Povidona/química , Solubilidade/efeitos da radiação , Comprimidos
9.
Eur J Pharm Sci ; 163: 105858, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887432

RESUMO

Amorphisation within the final dosage form, i.e. in situ amorphisation, seeks to circumvent the potential stability issues associated with poorly soluble drugs in amorphous solid dispersions (ASDs). Microwave irradiation has previously been shown to enable in situ preparation of ASDs, when a high amount of microwave absorbing water was introduced into the final dosage form by conditioning at high relative humidity. In this study, an alternative to this conditioning step was investigated by introducing crystal water in form of sodium dihydrogen phosphate (NaH2PO4) di-, and monohydrate, in compacts prepared with 30 % w/w celecoxib (CCX) in polyvinylpyrrolidone K12 (PVP). As controls, compacts prepared with NaH2PO4 anhydrate and without NaH2PO4 were included in the study. The quantification of amorphous CCX after microwave irradiation showed an increase in CCX amorphicity for compacts containing NaH2PO4 di-, and monohydrate with increasing irradiation time. Complete amorphisation of CCX in compacts containing NaH2PO4 di-, and monohydrate was observed after 6 min, while no appreciable amorphisation was observed for the control compacts containing NaH2PO4 anhydrate and without NaH2PO4. Modulated differential scanning calorimetric analysis revealed that a homogenous ASD was formed after 12 min and 6 min for compacts containing NaH2PO4 di-, and monohydrate, respectively. Thermal gravimetric analysis indicated that NaH2PO4 monohydrate showed higher dehydration rates compared to the dihydrate, which in turn resulted in higher compact temperatures, and overall increased the rate of amorphisation and reduced the microwave irradiation time necessary to achieve a homogenous ASD. The present results confirmed the suitability of NaH2PO4 di- and monohydrate as alternative sources of water, the primary microwave absorbing material, for in situ microwave amorphisation. The use of crystalline hydrates as water reservoirs for in situ amorphisation circumvents the time-consuming and highly impractical conditioning step previously reported in order to achieve complete amorphisation. Additionally, it allows for easier and more accurate adjustment of the compacts water content, which directly affects the temperature reached during microwave irradiation, and thus, the rate of amorphisation.


Assuntos
Micro-Ondas , Preparações Farmacêuticas , Varredura Diferencial de Calorimetria , Cristalização , Povidona , Solubilidade
10.
J Pharm Sci ; 110(1): 155-163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058897

RESUMO

Microwave-induced in situ amorphization is a promising approach to circumvent stability and manufacturing issues associated with amorphous solid dispersions (ASD). Using in situ amorphization, the crystalline state of the drug is converted into its amorphous form inside the dosage form, e.g. a compact, upon exposure to microwave radiation. The study aimed to investigate the feasibility of using glycerol as an enabling excipient in compacts prepared from mixtures of indomethacin and Soluplus®. Additionally, the possibility to form a supersaturated ASD upon exposure to microwave radiation due to elevated temperatures was investigated. It was found that glycerol i) acts as a dielectric heating source absorbing the microwaves, ii) plasticizes the polymer Soluplus® and iii) increases the solubility of the drug indomethacin in the polymer Soluplus®. Additionally, it was found that fully amorphous ASDs could be achieved with drug loadings below -, and slightly above the saturation solubility of indomethacin in the Soluplus®/glycerol mixtures, after exposure to 20 min of microwave radiation. Hence, glycerol was a feasible excipient for the microwave-induced in situ amorphization and allowed the preparation of a, at room temperature, supersaturated ASD, due to the elevated temperatures obtained during exposure to microwave radiation.


Assuntos
Excipientes , Micro-Ondas , Estabilidade de Medicamentos , Glicerol , Indometacina , Solubilidade
11.
Pharmaceutics ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471023

RESUMO

In this study, the putative correlation between the molecular mobility of a polymer and the ball milling drug amorphization kinetics (i.e., time to reach full drug amorphization, ta) was studied using different grades of dextran (Dex) and polyvinylpyrrolidone (PVP) and the two model drugs indomethacin (IND) and chloramphenicol (CAP). In general, IND had lower ta values than CAP, indicating that IND amorphized faster than CAP in the presence of the polymers. In addition, an increase in polymer molecular weight (Mw) also led to an increase in ta for all systems investigated up to a critical Mw for each polymer, which was in line with an increase of the glass transition temperature (Tg) up to the critical Mw of each polymer. Hence, the increase in ta seemed to correlate well with the Tg/Mw of the polymers, which indicates that the polymers' molecular mobility had an influence on the drug amorphization kinetics during ball milling.

12.
Int J Pharm X ; 1: 100026, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31517291

RESUMO

In this study, a method is described to determine the monolayer loading capacity (MLC) of the drugs naproxen and ibuprofen, both having high recrystallization tendencies, in mesoporous silica (MS), a well known carrier that is able to stabilize the amorphous form of a drug. The stabilization has been suggested to be due to direct absorption of the drug molecules onto the MS surface, i.e. the drug monolayer. In addition, drug that is not in direct contact with MS surface can fill the pores up to its pore filling capacity (PFC) and is potentially stabilized by confinement due to the pore size being smaller than a crystal nuclei. For drugs with high recrystallization tendencies, any drug outside the pores crystallizes due to its poor physical stability. The drug monolayer does not contribute to the glass transition temperature (Tg ) in the DSC, however, the confined amorphous drug above MLC has a Tg and the heat capacity (ΔC p) over the Tg increases with an increasing fraction of confined amorphous drug. Hence, several drug loading values above the MLC were investigated towards the presence of a Tg and ΔC p using differential scanning calorimetry (DSC). A linear correlation between the amount of confined amorphous drug and its ΔC p was identified for the mixtures between the MLC and PFC. By subsequent extrapolation to zero ΔC p the experimental MLC could be determined. Using theoretical density functional theory (DFT) and ab initio Molecular Dynamics (AIMD), the binding energies for the monolayer suggested that the monolayer in fact is thermodynamically more favorable than the crystalline form, whereas the confined amorphous form is thermodynamically less favorable. Consequently, a physical stability study showed that the confined amorphous drugs above the MLC were thermodynamically unstable and consequently flowing out of the pores in order to crystallize, whereas the monolayer remained physically stable.

13.
Eur J Pharm Biopharm ; 130: 290-295, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30064702

RESUMO

In this study, the performance of phase separated and crystallized amorphous solid dispersions (ASDs) was evaluated by non-sink in vitro dissolution testing in fasted-state simulated intestinal fluid (FaSSIF) and in vivo in rats. The amorphous phase-separated or crystallized ASDs were prepared by mixing an ASD of the model drug celecoxib (CCX) in polyvinylpyrrolidone (PVP) with pure amorphous or micronized crystalline CCX at 20, 40, 60 or 100% of the total drug load (25:75 w/w CCX:PVP), respectively. As expected, crystallization of CCX in the ASDs generally had a negative influence on both the area under the curve of the dissolution curve (in vitro AUC) and the plasma concentration-time profile (in vivo AUC) in rats compared to the pure ASD. However, the difference between the in vivo AUC of the pure ASD and the 20% and 40% crystallized ASDs was not statistically significant, which could indicate that a low fraction of crystallization of a drug in an ASD may only have limited impact on in vivo performance and hence bioavailability. In comparison, amorphous phase separation of CCX in the ASDs did not negatively influence the in vitro AUC and in vivo AUC to the same degree as crystallization and the dissolution profiles of all the amorphous phase-separated ASDs were similar to that of the pure ASD. In fact, even though a slight decrease of in vivo AUC with increasing fraction of amorphous phase separation was observed, the 20% and 40% amorphous phase-separated ASDs were bioequivalent with the pure ASD.


Assuntos
Celecoxib/administração & dosagem , Química Farmacêutica/métodos , Portadores de Fármacos/química , Povidona/química , Animais , Área Sob a Curva , Disponibilidade Biológica , Celecoxib/química , Celecoxib/farmacocinética , Cristalização , Secreções Intestinais/parasitologia , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade , Equivalência Terapêutica
14.
Int J Pharm ; 544(1): 153-157, 2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-29679750

RESUMO

The aim of this study was to introduce a fast and reliable differential scanning calorimetry (DSC)-based method to determine the monomolecular loading capacity of drugs with good glass-forming ability in mesoporous silica (MS). The proposed method is based on a solvent-free melting/fusion of drug into the MS during a heat-cool-heat cycle in the DSC. Overloaded drug-MS systems were analyzed in the DSC at different drug ratios (50, 60, 70, 80 and 90% w/w) to quantify the excess drug in the (the fraction not adsorbed to the MS surface). During the first heating, the drug will melt and fuse into the pores of the MS and upon subsequent quench cooling, the drug that is not adsorbed to the surface of the MS will amorphize into a separate phase (as drugs with good glass-forming ability do not crystallize upon quench-cooling from the melt). The drug molecules adsorbed to the MS surface are "immobilized" and will not contribute to a glass transition in the DSC and thus, the excess drug can be quantified simply by determining the change in the heat capacity over the glass transition (ΔCp). Since the ΔCp of overloaded samples decrease linearly with decreasing drug content, the monomolecular loading capacity of the drug in the MS can be determined by extrapolating to zero ΔCp. This value corresponds to the highest drug load at which the drug is monomolecularly adsorbed to the surface of the MS and has no drug-related thermal events (glass transition), i.e. a thermodynamically stable system. Using this method, it was possible to determine the monomolecular loading capacity of four drugs with good glass-forming ability in four different MS. These determinations were in good agreement with the physical stability of the systems during an accelerated stability study, which indicates that the thermoanalytical method enabled fast and reliable determination of the monomolecular loading capacity of drugs in MS.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Dióxido de Silício/química , Carbazóis/química , Carvedilol , Cinarizina/química , Estabilidade de Medicamentos , Vidro/química , Ibuprofeno/química , Indometacina/química , Porosidade , Propanolaminas/química
15.
Eur J Pharm Sci ; 117: 62-67, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29428542

RESUMO

In this study, the influence of drug load on the microwave-induced amorphization of celecoxib (CCX) in polyvinylpyrrolidone (PVP) tablets was investigated using quantitative transmission Raman spectroscopy. A design of experiments (DoE) setup was applied for developing the quantitative model using two factors: drug load (10, 30, and 50% w/w) and amorphous fraction (0, 25, 50, 75 and 100%). The data was modeled using partial least-squares (PLS) regression and resulted in a robust model with a root mean-square error of prediction of 2.5%. The PLS model was used to study the amorphization kinetics of CCX-PVP tablets with different drug content (10, 20, 30, 40 and 50% w/w). For this purpose, transition Raman spectra were collected in 60 s intervals over a total microwave time of 10 min with an energy input of 1000 W. Using the quantitative model it was possible to measure the amorphous fraction of the tablets and follow the amorphization as a function of microwaving time. The relative amorphous fraction of CCX increased with increasing microwaving time and decreasing drug load, hence 90 ±â€¯7% of the drug was amorphized in the tablets with 10% drug load whereas only 31 ±â€¯7% of the drug was amorphized in the 50% CCX tablets. It is suggested that the degree of amorphization depends on drug loading. The likelihood of drug particles being in direct contact with the polymer PVP is a requirement for the dissolution of the drug into the polymer upon microwaving, and this is reduced with increasing drug load. This was further supported by polarized light microscopy that revealed evidence of crystalline particles and clusters in all the microwaved tablets.


Assuntos
Celecoxib/efeitos da radiação , Micro-Ondas , Celecoxib/química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/efeitos da radiação , Análise dos Mínimos Quadrados , Povidona/química , Povidona/efeitos da radiação , Análise Espectral Raman , Comprimidos
16.
Int J Pharm ; 540(1-2): 98-105, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29425764

RESUMO

The aim of the present study was to compare two DSC-based methods to predict drug-polymer solubility (melting point depression method and recrystallization method) and propose a guideline for selecting the most suitable method based on physicochemical properties of both the drug and the polymer. Using the two methods, the solubilities of celecoxib, indomethacin, carbamazepine, and ritonavir in polyvinylpyrrolidone, hydroxypropyl methylcellulose, and Soluplus® were determined at elevated temperatures and extrapolated to room temperature using the Flory-Huggins model. For the melting point depression method, it was observed that a well-defined drug melting point was required in order to predict drug-polymer solubility, since the method is based on the depression of the melting point as a function of polymer content. In contrast to previous findings, it was possible to measure melting point depression up to 20 °C below the glass transition temperature (Tg) of the polymer for some systems. Nevertheless, in general it was possible to obtain solubility measurements at lower temperatures using polymers with a low Tg. Finally, for the recrystallization method it was found that the experimental composition dependence of the Tg must be differentiable for compositions ranging from 50 to 90% drug (w/w) so that one Tg corresponds to only one composition. Based on these findings, a guideline for selecting the most suitable thermal method to predict drug-polymer solubility based on the physicochemical properties of the drug and polymer is suggested in the form of a decision tree.


Assuntos
Varredura Diferencial de Calorimetria , Portadores de Fármacos , Preparações Farmacêuticas/química , Polímeros/química , Tecnologia Farmacêutica/métodos , Carbamazepina/química , Celecoxib/química , Cristalização , Árvores de Decisões , Composição de Medicamentos , Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Indometacina/química , Modelos Químicos , Polietilenoglicóis/química , Polivinil/química , Povidona/química , Ritonavir/química , Solubilidade , Temperatura de Transição
17.
Int J Pharm ; 531(1): 324-331, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827200

RESUMO

The present study investigated the influence of in vitro dissolution conditions on the in vivo predictability of an amorphous solid dispersion of celecoxib (CCX) in the pH-sensitive polymer Eudragit® S 100. Different doses of a 25:75w/w% CCX:Eudragit® S 100 amorphous solid dispersion (CCX:EUD) were investigated. During in vitro dissolution a significant effect of the pH of the dissolution media on the release of CCX was observed. In fasted state simulated intestinal fluid (FaSSIF) pH 6.5, the release of CCX from the amorphous solid dispersion was comparable to that of crystalline CCX and lower than that of amorphous CCX whereas in FaSSIF pH 7.4, the release was significantly increased compared to both crystalline and amorphous CCX. With a 3-fold increase in the exposure of CCX:EUD compared to crystaline CCX. The in vivo data also suggested that Eudragit® S 100 was suitable as a carrier in amorphous solid dispersions of CCX. In vitro-in vivo correlation demonstrated that the in vitro data obtained in FaSSIF pH 7.4 was more predictive for the in vivo performance than that obtained in FaSSIF pH 6.5. Consequently, the findings of this study underline that when predicting the in vivo performance of amorphous solid dispersions with pH-sensitive polymers, it is imperative that the in vitro dissolution conditions are carefully considered.


Assuntos
Celecoxib/química , Portadores de Fármacos/química , Ácidos Polimetacrílicos/química , Concentração de Íons de Hidrogênio , Polímeros , Solubilidade
18.
Eur J Pharm Biopharm ; 105: 106-14, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27212472

RESUMO

This study investigated the non-sink in vitro dissolution behavior and in vivo performance in rats of celecoxib (CCX) amorphous solid dispersions with polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) at different drug doses. Both in vitro and in vivo, the amorphous solid dispersions with the hydrophilic polymers PVP and HPMC led to higher areas under both, the in vitro dissolution and the plasma concentration-time curves (AUC) compared to crystalline and amorphous CCX for all doses. In contrast, the amorphous solid dispersion with the hydrophobic polymer PVA showed a lower AUC both in vitro and in vivo than crystalline CCX. For crystalline CCX and CCX:PVA, the in vitro AUC was limited by the low solubility of the drug and the slow release of the drug from the hydrophobic polymer, respectively. For the supersaturating formulations, amorphous CCX, CCX:PVP and CCX:HPMC, the in vitro performance was mainly dependent on the dissolution rate and precipitation/crystallization inhibition of the polymer. As expected, the crystallization tendency increased with increasing dose, and therefore the in vitro AUCs did not increase proportionally with dose. Even though the in vivo AUC for all formulations increased with increasing dose, the relative bioavailability decreased significantly, indicating that the supersaturating formulations also crystallized in vivo and that the absorption of CCX was solubility-limited. These findings underline the importance of evaluating relevant in vitro doses, in order to rationally assess the performance of amorphous solid dispersions and avoid confusion in early in vivo studies.


Assuntos
Polímeros/química , Animais , Cromatografia Líquida de Alta Pressão , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley
19.
J Pharm Sci ; 105(9): 2621-2624, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27012222

RESUMO

The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both fundamentally and practically.


Assuntos
Estabilidade de Medicamentos , Preparações Farmacêuticas/química , Polímeros/química , Acetaminofen/química , Celecoxib/química , Química Farmacêutica , Cloranfenicol/química , Cromatografia Líquida de Alta Pressão , Solubilidade , Soluções , Temperatura de Transição
20.
Eur J Pharm Biopharm ; 101: 145-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26899127

RESUMO

In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased with decreasing PVP molecular weight and crystallization inhibition was increased with increasing molecular weight of PVP, but reached a maximum for PVP K30. This suggested that the crystallization inhibition was not proportional with molecular weight of the polymer, but rather there was an optimal molecular weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled a ranking between the different formulations. In conclusion, the findings of this study demonstrated that the in vitro and in vivo performance of CCX:PVP amorphous solid dispersions were significantly controlled by the molecular weight of the polymer.


Assuntos
Celecoxib/química , Polímeros/química , Povidona/química , Animais , Disponibilidade Biológica , Celecoxib/farmacocinética , Química Farmacêutica/métodos , Cristalização , Masculino , Peso Molecular , Ratos , Ratos Sprague-Dawley , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...