Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 21(12): 2179-2192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36178669

RESUMO

The phenomenon of photoacidity, i.e., an increase in acidity by several orders of magnitude upon electronic excitation, is frequently encountered in aromatic alcohols capable of transferring a proton to a suitable acceptor. A promising new class of neutral super-photoacids based on pyranine derivatives has been shown to exhibit pronounced solvatochromic effects. To disclose the underlying mechanisms contributing to excited-state proton transfer (ESPT) and the temporal characteristics of solvation and ESPT, we scrutinize the associated ultrafast dynamics of the strongest photoacid of this class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)8-hydroxypyrene-1,3,6-trisulfonate, in acetoneous environment, thereby finding experimental evidence for ESPT even under these adverse conditions for proton transfer. Juxtaposing results from time-correlated single-photon counting and femtosecond transient absorption measurements combined with a complete decomposition of all signal components, i.e., absorption of ground and excited states as well as stimulated emission, we disclose dynamics of solvation, rotational diffusion, and radiative relaxation processes in acetone and identify the relevant steps of ESPT along with the associated time scales.


Assuntos
Prótons
2.
J Colloid Interface Sci ; 623: 595-606, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35598487

RESUMO

HYPOTHESIS: The accurate determination of viscosity and interfacial tension by surface light scattering (SLS) represents a challenging task, especially in the range of small wave vectors. Here, measurements are subjected to line-broadening effects, which are often not adequately described by empirical fitting routines in literature. EXPERIMENTS: For tackling this limitation, a novel evaluation strategy relying on a Monte-Carlo-based optimization is suggested in the present study. Without making prior assumptions about the underlying distribution of wave vectors, the method allows to decompose the measured SLS signal into a superposition of individual contributions represented by damped oscillations. The resulting amplitude distribution for damping and frequency is used to estimate the central wave vector, all of which is required to solve the dispersion relation for hydrodynamic surface fluctuations in its exact form. FINDINGS: By applying the evaluation strategy to SLS signals recorded in reflection direction for the reference fluid toluene, it is demonstrated that the presented concept provides a route towards an accurate determination of viscosity and surface tension in the range of small wave vectors. Hence, the strategy is considered to extend the application range of SLS in connection with opaque and non-transparent fluids for which small wave vectors often need to be probed experimentally.


Assuntos
Hidrodinâmica , Método de Monte Carlo , Tensão Superficial , Viscosidade
3.
Phys Chem Chem Phys ; 23(42): 24187-24199, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34679150

RESUMO

Transition metal complexes capable of releasing small molecules such as carbon monoxide and nitric oxide upon photoactivation are versatile tools in various fields of chemistry and biology. In this work, we report on the ultrafast photochemistry of [Mo(CO)2(NO)(iPr3tacn)]PF6 (iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclononane), which was characterized under continuous illumination and with femtosecond UV-pump/UV-probe and UV-pump/MIR-probe spectroscopy, as well as with stationary calculations. The experimental and theoretical results demonstrate that while the photodissociation of one of the two CO ligands upon UV excitation can be inferred both on an ultrafast timescale as well as under exposure times of several minutes, no evidence of NO release is observed under the same conditions. The binding mode of the diatomic ligands is impacted by the electronic excitation, and transient intermediates are observed on a timescale of tens of picoseconds before CO is released from the coordination sphere. Furthermore, based on calculated potential energy scans, we suggest that photolysis of NO could be possible after a subsequent excitation of an electronically excited state with a second laser pulse, or by accessing low-lying excited states that otherwise cannot be directly excited by light.

4.
Appl Opt ; 60(29): 9042-9053, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623984

RESUMO

In the present study, the capabilities and limitations of surface light scattering (SLS) experiments in reflection geometry are investigated. Based on the study of the transparent reference fluid toluene at 303.15 K over a wide range of wave vectors between (0.3and6.6)×105m-1, the performance of two different detection schemes analyzing light scattered from the vapor-liquid interface in a perpendicular and non-perpendicular direction is assessed. Considering various aspects such as the quality of the heterodyne correlation functions, the input information for data evaluation, and the line-broadening effects, both detection schemes show comparable overall efficiency. For wave vectors larger than 4.5×105m-1, where line-broadening effects are suppressed, the results obtained for liquid viscosity and surface tension agree with measurements in transmission geometry, validating the capability of the apparatus. For wave vectors smaller than 1.5×105m-1, the SLS signals are distinctly affected by line-broadening effects, which will result in erroneous values for surface tension and in particular viscosity, even if empirical fitting approaches commonly used in literature are applied. The modeling of the influence of line broadening on the measurements results by a simple Gaussian-weighted sum of individual damped oscillations reveals the increasing complexity of the underlying wave vector distribution toward smaller wave vectors chosen for the scattering geometry.

5.
J Org Chem ; 84(18): 11450-11457, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31343881

RESUMO

We investigate the effects of small admixtures of protic solvent molecules, such as water and alcohols, on the ultrafast dynamics of diphenylcarbene in acetonitrile at room temperature. Broadband transient absorption measurements and quantum mechanics/molecular mechanics molecular dynamics simulations allow elucidating the dominant reaction mechanism of an intermediate hydrogen-bonded complex between singlet diphenylcarbene and a protic solvent molecule, thus competing with intersystem crossing. Analysis of the data indicates that complex formation is a diffusion-controlled process with orientational requirements. The reaction path involving a benzhydryl cation is less likely in neat bulkier alcohols, as it requires the interaction of the carbene with a protic solvent molecule being part of a hydrogen-bonded network. The simulations indicate a further reaction path toward O-H insertion and two side reactions depending on the involved protic solvent species. Thus, we established that not only the number but also the chemical nature of the protic solvent molecule determine which reaction path is pursued.

6.
Phys Chem Chem Phys ; 20(44): 28075-28087, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30383059

RESUMO

Understanding deactivation mechanisms of functional groups is a key step to design novel photo-active devices and molecular imaging agents. Here, we elucidate the photochemistry of linear triazenes, an extended analogue of the photo-switchable azo group, exemplarily for the widely used DNA-minor-groove binder berenil. Combining ultrafast spectroscopy and ab initio calculations unveils that the E-azo,s-trans structure of berenil predominates in the gas phase and in aqueous solution, and ADC(2) intrinsic reaction coordinate calculations disclose that the excited-state relaxation to the S1 minima/conical intersections follows a two-step mechanism: N[double bond, length as m-dash]N bond stretching followed by a bicycle-pedal rotation in the triazene bridge. Furthermore, studying the ground-state pathways shows that a fraction of the molecules relaxes back to the E-azo,s-trans isomer while the other part photoisomerizes to the Z-azo,s-trans via a hula-twist motion, as evidenced by experimental quantum yields of Φ ≈ 0.5 found for berenil in water, ethylene glycol, or bound to ß-trypsin. Moreover, our studies show that while the excited-state relaxation is insensitive to the environment, the ground-state dynamics depend on biomolecular binding partners.

7.
Nat Commun ; 7: 12968, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708264

RESUMO

Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate.

8.
J Phys Chem Lett ; 4(4): 596-602, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26281872

RESUMO

Ultraviolet irradiation of a manganese-tricarbonyl CO-releasing molecule (CORM) in water eventually leads to the liberation of some of the carbon monoxide ligands. By ultraviolet pump/mid-infrared probe femtosecond transient absorption spectroscopy in combination with quantum chemical calculations, we could disclose for the exemplary compound [Mn(CO)3(tpm)](+) (tpm = tris(2-pyrazolyl)methane) that only one of the three carbonyl ligands is photochemically dissociated on an ultrafast time scale and that some molecules may undergo geminate recombination.

9.
Opt Express ; 21(25): 30693-706, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514645

RESUMO

A comparative study is carried out on two spectroscopic techniques employed to detect ultrafast absorption changes in the mid-infrared spectral range, namely direct multichannel detection via HgCdTe (MCT) photodiode arrays and the newly established technique of chirped-pulse up-conversion (CPU). Whereas both methods are meanwhile individually used in a routine manner, we directly juxtapose their applicability in femtosecond pump-probe experiments based on 1 kHz shot-to-shot data acquisition. Additionally, we examine different phase-matching conditions in the CPU scheme for a given mid-infrared spectrum, thereby simultaneously detecting signals which are separated by more than 200 cm(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...