Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38994972

RESUMO

Understanding tumor-host immune interactions and the mechanisms of lung cancer response to immunotherapy is crucial. Current preclinical models used to study this often fall short of capturing the complexities of human lung cancer and lead to inconclusive results. To bridge the gap, we introduce two new murine monoclonal lung cancer cell lines for use in immunocompetent orthotopic models. We demonstrate how our cell lines exhibit immunohistochemical protein expression (TTF-1, NapA, PD-L1) and common driver mutations (KRAS, p53, and p110α) seen in human lung adenocarcinoma patients, and how our orthotopic models respond to combination immunotherapy in vivo in a way that closely mirrors current clinical outcomes. These new lung adenocarcinoma cell lines provide an invaluable, clinically relevant platform for investigating the intricate dynamics between tumor and the immune system, and thus potentially contributes to a deeper understanding of immunotherapeutic approaches to lung cancer treatment.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Animais , Imunoterapia/métodos , Humanos , Linhagem Celular Tumoral , Camundongos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Modelos Animais de Doenças , Feminino
2.
Int J Mol Sci ; 18(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338622

RESUMO

A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.


Assuntos
Inibidores de Fosfodiesterase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sistema Nervoso Central/fisiologia , Doenças do Sistema Nervoso Central/prevenção & controle , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Regeneração/efeitos dos fármacos , Sistemas do Segundo Mensageiro
3.
Pain Res Treat ; 2014: 178278, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180088

RESUMO

Behavioral hypersensitivity is common following spinal cord injury (SCI), producing significant discomfort and often developing into chronic pain syndromes. While the mechanisms underlying the development of behavioral hypersensitivity after SCI are poorly understood, previous studies of SCI contusion have shown an increase in amino acids, namely, aspartate and glutamate, along with a decrease in GABA and glycine, particularly below the injury. The current study sought to identify alterations in key enzymes and receptors involved in mediating central inhibition via GABA and glycine after a clinically-relevant contusion SCI model. Following thoracic (T8) 25.0 mm NYU contusion SCI in rodents, significant and persistent behavioral hypersensitivity developed as evidenced by cutaneous allodynia and thermal hyperalgesia. Biochemical analyses confirmed upregulation of glutamate receptor GluR3 with downregulation of the GABA synthesizing enzyme (GAD65/67) and the glycine receptor α3 (GLRA3), notably below the injury. Combined, these changes result in the disinhibition of excitatory impulses and contribute to behavioral hyperexcitability. This study demonstrates a loss of central inhibition and the development of behavioral hypersensitivity in a contusive SCI paradigm. Future use of this model will permit the evaluation of different antinociceptive strategies and help in the elucidation of new targets for the treatment of neuropathic pain.

4.
Biomed Res Int ; 2014: 651625, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177696

RESUMO

Disruption of axonal integrity during injury to the peripheral nerve system (PNS) sets into motion a cascade of responses that includes inflammation, Schwann cell mobilization, and the degeneration of the nerve fibers distal to the injury site. Yet, the injured PNS differentiates itself from the injured central nervous system (CNS) in its remarkable capacity for self-recovery, which, depending upon the length and type of nerve injury, involves a series of molecular events in both the injured neuron and associated Schwann cells that leads to axon regeneration, remyelination repair, and functional restitution. Herein we discuss the essential function of the second messenger, cyclic adenosine monophosphate (cyclic AMP), in the PNS repair process, highlighting the important role the conditioning lesion paradigm has played in understanding the mechanism(s) by which cyclic AMP exerts its proregenerative action. Furthermore, we review the studies that have therapeutically targeted cyclic AMP to enhance endogenous nerve repair.


Assuntos
AMP Cíclico/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervos Periféricos/fisiopatologia , Transdução de Sinais , Animais , Humanos , Modelos Neurológicos , Traumatismos dos Nervos Periféricos/patologia , Nervos Periféricos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA