Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cancer ; 21(1): 199, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229873

RESUMO

Chimeric fusion transcription factors are oncogenic hallmarks of several devastating cancer entities including pediatric sarcomas, such as Ewing sarcoma (EwS) and alveolar rhabdomyosarcoma (ARMS). Despite their exquisite specificity, these driver oncogenes have been considered largely undruggable due to their lack of enzymatic activity.Here, we show in the EwS model that - capitalizing on neomorphic DNA-binding preferences - the addiction to the respective fusion transcription factor EWSR1-FLI1 can be leveraged to express therapeutic genes.We genetically engineered a de novo enhancer-based, synthetic and highly potent expression cassette that can elicit EWSR1-FLI1-dependent expression of a therapeutic payload as evidenced by episomal and CRISPR-edited genomic reporter assays. Combining in silico screens and immunohistochemistry, we identified GPR64 as a highly specific cell surface antigen for targeted transduction strategies in EwS. Functional experiments demonstrated that anti-GPR64-pseudotyped lentivirus harboring our expression cassette can specifically transduce EwS cells to promote the expression of viral thymidine kinase sensitizing EwS for treatment to otherwise relatively non-toxic (Val)ganciclovir and leading to strong anti-tumorigenic, but no adverse effects in vivo. Further, we prove that similar vector designs can be applied in PAX3-FOXO1-driven ARMS, and to express immunomodulatory cytokines, such as IL-15 and XCL1, in tumor entities typically considered to be immunologically 'cold'.Collectively, these results generated in pediatric sarcomas indicate that exploiting, rather than suppressing, the neomorphic functions of chimeric transcription factors may open inroads to innovative and personalized therapies, and that our highly versatile approach may be translatable to other cancers addicted to oncogenic transcription factors with unique DNA-binding properties.


Assuntos
Sarcoma de Ewing , Sarcoma , Antígenos de Superfície/uso terapêutico , Linhagem Celular Tumoral , Criança , DNA , Ganciclovir/uso terapêutico , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/uso terapêutico , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma/genética , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/terapia , Timidina Quinase/genética , Timidina Quinase/metabolismo , Timidina Quinase/uso terapêutico
4.
Nature ; 605(7911): 747-753, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585241

RESUMO

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Fosfoglicerato Desidrogenase , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Camundongos , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo
6.
Nat Commun ; 12(1): 5356, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531368

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer1. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably 'silent' genomes with minimal CIN2. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression. We find that the EwS-specific oncogenic transcription factor EWSR1-FLI1 hijacks PRC1, which physiologically safeguards controlled cell division, through binding to a proximal enhancer-like GGAA-microsatellite, thereby promoting tumor growth and poor clinical outcome. Via integration of transcriptome-profiling and functional in vitro and in vivo experiments including CRISPR-mediated enhancer editing, we discover that high PRC1 expression creates a therapeutic vulnerability toward PLK1 inhibition that can repress even chemo-resistant EwS cells by triggering mitotic catastrophe.Collectively, our results exemplify how aberrant PRC1 activation by a dominant oncogene can confer malignancy but provide opportunities for targeted therapy, and identify PRC1 expression as an important determinant to predict the efficacy of PLK1 inhibitors being used in clinical trials.


Assuntos
Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Sarcoma de Ewing/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Criança , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Terapêutica com RNAi/métodos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/terapia , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinase 1 Polo-Like
8.
Methods Mol Biol ; 2226: 119-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326097

RESUMO

Gene expression and knockdown systems are powerful tools to study the function of single genes and their pathway interaction. Plasmid transfection and viral transduction have revolutionized the field of molecular biology and paved the ground for various gene-editing strategies such as TALEN, zinc finger nucleases, and ultimately CRISPR. In Ewing sarcoma (EwS), almost as many genes are repressed by the expression of EWSR1-FLI1 as are upregulated by the fusion oncogene. Here we present a useful point-to-point protocol for the generation of transgene expression systems in EwS that allow (conditional) reexpression of a gene of interest. We provide an extensive instruction on molecular cloning, plasmid generation, viral transduction, and expression validation. Finally, we address common problems and highlight potential pitfalls, which can easily be avoided by thoughtful guidance.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , Sarcoma de Ewing/genética , Neoplasias Ósseas/diagnóstico , Clonagem Molecular , Elementos Facilitadores Genéticos , Vetores Genéticos/genética , Humanos , Repetições de Microssatélites , Proteínas de Fusão Oncogênica/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Sarcoma de Ewing/diagnóstico , Transdução Genética
9.
Methods Mol Biol ; 2226: 139-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326098

RESUMO

Reporter gene assays allow for examining the influence of regulatory DNA sequences on the transcription of target genes. In Ewing sarcoma, the study of these DNA sequences is especially paramount for its main driver mutation is a fusion transcription factor that binds different motifs than its wild-type constituents. Here, we describe the process of analyzing the enhancer activity of regulatory DNA sequences using transfection-based dual-luciferase reporter assays in Ewing sarcoma cell lines. To this end, we provide a protocol for cloning sequences of interest from genomic DNA into a firefly luciferase-containing plasmid, transfecting Ewing sarcoma cells with plasmids and measuring luciferase expression by luminescence. The entire procedure can be completed in 14 days.


Assuntos
Bioensaio , Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Sequências Reguladoras de Ácido Nucleico , Sarcoma de Ewing/genética , Bioensaio/métodos , Clonagem Molecular , Elementos Facilitadores Genéticos , Ordem dos Genes , Humanos , Proteínas de Fusão Oncogênica/genética , Plasmídeos/genética , Regiões Promotoras Genéticas
11.
Nat Commun ; 11(1): 2423, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415069

RESUMO

Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers.Here, we show that EWSR1-FLI1 hijacks the developmental transcription factor SOX6 - a physiological driver of proliferation of osteo-chondrogenic progenitors - by binding to an intronic GGAA-microsatellite, which promotes EwS growth in vitro and in vivo. Through integration of transcriptome-profiling, published drug-screening data, and functional in vitro and in vivo experiments including 3D and PDX models, we discover that constitutively high SOX6 expression promotes elevated levels of oxidative stress that create a therapeutic vulnerability toward the oxidative stress-inducing drug Elesclomol.Collectively, our results exemplify how aberrant activation of a developmental transcription factor by a dominant oncogene can promote malignancy, but provide opportunities for targeted therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/metabolismo , Estresse Oxidativo , Sarcoma de Ewing/patologia , Adulto , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Criança , Condrócitos/metabolismo , Metilação de DNA , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Hidrazinas/química , Células-Tronco Mesenquimais/metabolismo , Camundongos , Repetições de Microssatélites , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oncogenes , Interferência de RNA , Fatores de Transcrição SOXD/metabolismo , Sarcoma/genética
12.
Cancers (Basel) ; 12(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164354

RESUMO

Ewing sarcoma (EwS) is an aggressive cancer displaying an undifferentiated small-round-cell histomorphology that can be easily confused with a broad spectrum of differential diagnoses. Using comparative transcriptomics and immunohistochemistry (IHC), we previously identified BCL11B and GLG1 as potential specific auxiliary IHC markers for EWSR1-FLI1-positive EwS. Herein, we aimed at validating the specificity of both markers in a far larger and independent cohort of EwS (including EWSR1-ERG-positive cases) and differential diagnoses. Furthermore, we evaluated their intra-tumoral expression heterogeneity. Thus, we stained tissue microarrays from 133 molecularly confirmed EwS cases and 320 samples from morphological mimics, as well as a series of patient-derived xenograft (PDX) models for BCL11B, GLG1, and CD99, and systematically assessed the immunoreactivity and optimal cut-offs for each marker. These analyses demonstrated that high BCL11B and/or GLG1 immunoreactivity in CD99-positive cases had a specificity of 97.5% and an accuracy of 87.4% for diagnosing EwS solely by IHC, and that the markers were expressed by EWSR1-ERG-positive EwS. Only little intra-tumoral heterogeneity in immunoreactivity was observed for differential diagnoses. These results indicate that BCL11B and GLG1 may help as specific auxiliary IHC markers in diagnosing EwS in conjunction with CD99, especially if confirmatory molecular diagnostics are not available.

13.
Int J Cancer ; 146(7): 2036-2046, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732966

RESUMO

In prostate adenocarcinoma (PCa), distinction between indolent and aggressive disease is challenging. Around 50% of PCa are characterized by TMPRSS2-ERG (T2E)-fusion oncoproteins defining two molecular subtypes (T2E-positive/negative). However, current prognostic tests do not differ between both molecular subtypes, which might affect outcome prediction. To investigate gene-signatures associated with metastasis in T2E-positive and T2E-negative PCa independently, we integrated tumor transcriptomes and clinicopathological data of two cohorts (total n = 783), and analyzed metastasis-associated gene-signatures regarding the T2E-status. Here, we show that the prognostic value of biomarkers in PCa critically depends on the T2E-status. Using gene-set enrichment analyses, we uncovered that metastatic T2E-positive and T2E-negative PCa are characterized by distinct gene-signatures. In addition, by testing genes shared by several functional gene-signatures for their association with event-free survival in a validation cohort (n = 272), we identified five genes (ASPN, BGN, COL1A1, RRM2 and TYMS)-three of which are included in commercially available prognostic tests-whose high expression was significantly associated with worse outcome exclusively in T2E-negative PCa. Among these genes, RRM2 and TYMS were validated by immunohistochemistry in another validation cohort (n = 135), and several of them proved to add prognostic information to current clinicopathological predictors, such as Gleason score, exclusively for T2E-negative patients. No prognostic biomarkers were identified exclusively for T2E-positive tumors. Collectively, our study discovers that the T2E-status, which is per se not a strong prognostic biomarker, crucially determines the prognostic value of other biomarkers. Our data suggest that the molecular subtype needs to be considered when applying prognostic biomarkers for outcome prediction in PCa.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Biomarcadores Tumorais , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Adenocarcinoma/diagnóstico , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/diagnóstico
14.
Nat Commun ; 10(1): 4128, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511524

RESUMO

Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine.


Assuntos
Mutação em Linhagem Germinativa/genética , Neoplasias/genética , Neoplasias/terapia , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Repetições de Microssatélites/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fenótipo , Polimorfismo Genético , Transativadores , Resultado do Tratamento , Regulação para Cima/genética
15.
EBioMedicine ; 47: 156-162, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31427232

RESUMO

BACKGROUND: Up to 30-40% of Ewing sarcoma (EwS) patients with non-metastatic disease develop local or metastatic relapse within a time span of 2-10 years. This is in part caused by the absence of prognostic biomarkers that can identify high-risk patients and thus assign them to risk-adapted monitoring and treatment regimens. Since cancer stemness has been associated with tumour relapse and poor patient outcomes, we investigated in the current study the prognostic potential SOX2 (sex determining region Y box 2) - a major transcription factor involved in development and stemness - which was previously described to contribute to the undifferentiated phenotype of EwS. METHODS: Two independent patient cohorts, one consisting of 189 retrospectively collected EwS tumours with corresponding mRNA expression data (test-cohort) and the other consisting of 141 prospectively collected formalin-fixed and paraffin-embedded resected tumours (validation and cohort), were employed to analyse SOX2 expression levels through DNA microarrays or immunohistochemistry, respectively, and to compare them with clinical parameters and patient outcomes. Two methods were employed to test the validity of the results at both the mRNA and protein levels. FINDINGS: Both cohorts showed that only a subset of EwS patients (16-20%) expressed high SOX2 mRNA or protein levels, which significantly correlated with poor overall survival. Multivariate analyses of our validation-cohort revealed that high SOX2 expression represents a major risk-factor for poor survival (HR = 3·19; 95%CI 1·74-5·84; p < 0·01) that is independent from metastasis and other known clinical risk-factors at the time of diagnosis. Univariate analyses demonstrated that SOX2-high expression was correlated with tumour relapse (p = 0·002). The median first relapse was at 14·7 months (range: 3·5-180·7). INTERPRETATION: High SOX2 expression constitutes an independent prognostic biomarker for EwS patients with poor outcomes. This may help to identify patients with localised disease who are at high risk for tumour relapse within the first two years after diagnosis. FUNDING: The laboratory of T. G. P. Grünewald is supported by grants from the 'Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der LMU München (WiFoMed)', by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative, the 'Mehr LEBEN für krebskranke Kinder - Bettina-Bräu-Stiftung', the Walter Schulz Foundation, the Wilhelm Sander-Foundation (2016.167.1), the Friedrich-Baur foundation, the Matthias-Lackas foundation, the Barbara & Hubertus Trettner foundation, the Dr. Leopold & Carmen Ellinger foundation, the Gert & Susanna Mayer foundation, the Deutsche Forschungsgemeinschaft (DFG 391665916), and by the German Cancer Aid (DKH-111886 and DKH-70112257). J. Li was supported by a scholarship of the China Scholarship Council (CSC), J. Musa was supported by a scholarship of the Kind-Philipp foundation, and T. L. B. Hölting by a scholarship of the German Cancer Aid. M. F. Orth and M. M. L. Knott were supported by scholarships of the German National Academic Foundation. G. Sannino was supported by a scholarship from the Fritz-Thyssen Foundation (FTF-40.15.0.030MN). The work of U. Dirksen is supported by grants from the German Cancer Aid (DKH-108128, DKH-70112018, and DKH-70113419), the ERA-Net-TRANSCAN consortium (project number 01KT1310), and Euro Ewing Consortium (EEC, project number EU-FP7 602,856), both funded under the European Commission Seventh Framework Program FP7-HEALTH (http://cordis.europa.eu/), the Barbara & Hubertus Trettner foundation, and the Gert & Susanna Mayer foundation. G. Hardiman was supported by grants from the National Science Foundation (SC EPSCoR) and National Institutes of Health (U01-DA045300). The laboratory of J. Alonso was supported by Instituto de Salud Carlos III (PI12/00816; PI16CIII/00026); Asociación Pablo Ugarte (TPY-M 1149/13; TRPV 205/18), ASION (TVP 141/17), Fundación Sonrisa de Alex & Todos somos Iván (TVP 1324/15).


Assuntos
Expressão Gênica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Biomarcadores , Biomarcadores Tumorais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Fatores de Risco , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/mortalidade
16.
Int J Cancer ; 144(4): 859-867, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30267407

RESUMO

Soft-tissue sarcomas are rare, heterogeneous, and often aggressive mesenchymal cancers. Many of them are associated with poor outcome, partially because biomarkers that can identify high-risk patients are lacking. Studies on sarcomas are often limited by small sample-sizes rendering the identification of biomarkers difficult when focusing on individual cohorts. However, the increasing number of publicly available 'omics' data opens inroads to overcome this obstacle. Here, we combine transcriptome analyses, immunohistochemistry, and functional assays to show that high adenosine monophosphate deaminase 2 (AMPD2) is a robust prognostic biomarker for worse outcome in undifferentiated pleomorphic sarcoma (UPS). Gene expression and survival data for UPS from two independent studies were subjected to survival association-testing. Genes, whose high expression was significantly correlated with worse outcome in both cohorts, were considered as biomarker candidates. The best candidate, AMPD2, was validated in a tissue microarray. Analysis of DNA copy-number data and matched transcriptomes indicated that high AMPD2 expression is significantly correlated with gains at the AMPD2 locus. Gene set enrichment analyses of AMPD2 co-expressed genes in both transcriptome datasets suggested that AMPD2-high UPS are enriched in tumorigenic signatures. Consistently, knockdown of AMPD2 by RNA interference in an UPS cell line inhibited proliferation in vitro and tumorigenicity in vivo. Collectively, we provide evidence that AMPD2 may serve as a biomarker for outcome prediction in UPS. Our study exemplifies how the integration of 'omics' data, immunohistochemistry, and functional experiments can identify novel biomarkers even in a rare sarcoma, which may serve as a blueprint for biomarker identification for other rare cancers.


Assuntos
AMP Desaminase/genética , Biomarcadores Tumorais/genética , Genômica/métodos , Histiocitoma Fibroso Maligno/genética , AMP Desaminase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histiocitoma Fibroso Maligno/metabolismo , Histiocitoma Fibroso Maligno/patologia , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adulto Jovem
17.
Cancer Metastasis Rev ; 38(4): 625-642, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31970591

RESUMO

While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).


Assuntos
Neoplasias Ósseas/terapia , Terapia Genética/métodos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Sarcoma de Ewing/terapia , Sarcoma/terapia , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Sistemas CRISPR-Cas , Criança , Humanos , Pediatria/métodos , Rabdomiossarcoma Alveolar/tratamento farmacológico , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/terapia , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
18.
Oncoimmunology ; 7(9): e1481558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228952

RESUMO

Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data. We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-specific CSGs, and identified several established CSGs, but also many novel candidates potentially suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exquisitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich resource to advance anti-cancer immunotherapy.

19.
Oncotarget ; 9(2): 1587-1601, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29416716

RESUMO

Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although molecular detection of pathognomonic EWSR1-ETS fusions such as EWSR1-FLI1 enables definitive diagnosis, substantial confusion can arise if molecular diagnostics are unavailable. Diagnosis based on the conventional immunohistochemical marker CD99 is unreliable due to its abundant expression in morphological mimics. To identify novel diagnostic immunohistochemical markers for Ewing sarcoma, we performed comparative expression analyses in 768 tumors representing 21 entities including Ewing-like sarcomas, which confirmed that CIC-DUX4-, BCOR-CCNB3-, EWSR1-NFATc2-, and EWSR1-ETS-translocated sarcomas are distinct entities, and revealed that ATP1A1, BCL11B, and GLG1 constitute specific markers for Ewing sarcoma. Their high expression was validated by immunohistochemistry and proved to depend on EWSR1-FLI1-binding to highly active proximal super-enhancers. Automated cut-off-finding and combination-testing in a tissue-microarray comprising 174 samples demonstrated that detection of high BCL11B and/or GLG1 expression is sufficient to reach 96% specificity for Ewing sarcoma. While 88% of tested Ewing-like sarcomas displayed strong CD99-immunoreactivity, none displayed combined strong BCL11B- and GLG1-immunoreactivity. Collectively, we show that ATP1A1, BCL11B, and GLG1 are EWSR1-FLI1 targets, of which BCL11B and GLG1 offer a fast, simple, and cost-efficient way to diagnose Ewing sarcoma by immunohistochemistry. These markers may significantly reduce the number of misdiagnosed patients, and thus improve patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...