Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 18(22): 7816-25, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20965738

RESUMO

Na(v)1.8 (also known as PN3) is a tetrodotoxin-resistant (TTx-r) voltage-gated sodium channel (VGSC) that is highly expressed on small diameter sensory neurons. It has been implicated in the pathophysiology of inflammatory and neuropathic pain, and we envisioned that selective blockade of Na(v)1.8 would be analgesic, while reducing adverse events typically associated with non-selective VGSC blocking therapeutic agents. Herein, we describe the preparation and characterization of a series of 6-aryl-2-pyrazinecarboxamides, which are potent blockers of the human Na(v)1.8 channel and also block TTx-r sodium currents in rat dorsal root ganglia (DRG) neurons. Selected derivatives display selectivity versus human Na(v)1.2. We further demonstrate that an example from this series is orally bioavailable and produces antinociceptive activity in vivo in a rodent model of neuropathic pain following oral administration.


Assuntos
Neuralgia/tratamento farmacológico , Pirazinas/química , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/química , Administração Oral , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Gânglios Espinais/citologia , Humanos , Microssomos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8 , Neurônios/metabolismo , Pirazinas/farmacocinética , Pirazinas/uso terapêutico , Ratos , Bloqueadores dos Canais de Sódio/farmacocinética , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/metabolismo , Relação Estrutura-Atividade
2.
Evolution ; 56(4): 785-91, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12038536

RESUMO

Why convergent evolution occurs among some species occupying similar habitats but not among others is a question that has received surprisingly little attention. Caribbean Anolis lizards, known for their extensive convergent evolution among islands in the Greater Antilles, are an appropriate group with which to address this question. Despite the well-documented pattern of between-island convergence, some Greater Antillean anoles are not obviously part of the convergence syndrome. One example involves aquatic anoles--species that are found near to and readily enter streams-which have evolved independently twice in the Caribbean and also twice on mainland Central America. Despite being found in similar habitats, no previous study has investigated whether aquatic anoles represent yet another case of morphological convergence. We tested this hypothesis by collecting morphological data for seven aquatic anole species and 29 species from the six convergent types of Greater Antillean habitat specialists. We failed to find evidence for morphological convergence: the two Caribbean aquatic species are greatly dissimilar to each other and to the Central American species, which, however, may be convergent upon each other. We suggest two possible reasons for this lack of convergence in an otherwise highly convergent system: either there is more than one habitat type occupied by anoles in the proximity of water, or there is more than one way to adapt to a single aquatic habitat. We estimate that almost all of the 113 species of Greater Antillean anoles occupy habitats that are also used by distantly related species, but only 15% of these species are not morphologically similar to their distantly related ecological counterparts. Comparative data from other taxa would help enlighten the question of why the extent of convergence is so great in some lineages and not in others.


Assuntos
Evolução Biológica , Lagartos/genética , Animais , Região do Caribe , Lagartos/anatomia & histologia , Lagartos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...