Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(34): 31145-31154, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663484

RESUMO

In this work, the diblock copolymer methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (MPEG-b-PCL) was synthesized with a block composition that allows this polymer in aqueous media to possess both an upper critical solution temperature (UCST) and a lower critical solution temperature (LCST) over a limited temperature interval. The value of the UCST, associated with crystallization of the PCL-block, depended on heating (H) or cooling (C) of the sample and was found to be CPUCSTH = 32 °C and CPUCSTC = 23 °C, respectively. The LCST was not affected by the heating or cooling scans; assumed a value of 52 °C (CPLCSTH = CPLCSTC). At intermediate temperatures (e.g., 45 °C), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM) showed that the solution consisted of a large population of spherical core-shell particles and some self-assembled rodlike objects. At low temperatures (below 32 °C), differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) in combination with SAXS disclosed the formation of crystals with a cylindrical core-shell structure. Cryo-TEM supported a thread-like appearance of the self-assembled polymer chains. At temperatures above 52 °C, incipient phase separation took place and large aggregation complexes of amorphous morphology were formed. This work provides insight into the intricate interplay between UCST and LCST and the type of structures formed at these conditions in aqueous solutions of MPEG-b-PCL diblock copolymers.

2.
J Agric Food Chem ; 71(8): 3732-3741, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791398

RESUMO

It is known that the reduction of blood cholesterol can be accomplished through foods containing a large number of dietary fibers; this process is partially related to the binding of bile salt to fibers. To gain new insights into the interactions between dietary fibers and bile salts, this study investigates the interactions between cationic hydroxyethyl cellulose (catHEC) and sodium deoxycholate (NaDC) or sodium cholate (NaC), which have a similar structure. Turbidity measurements reveal strong interactions between catHEC and NaDC, and under some conditions, macroscopic phase separation occurs. In contrast, the interactions with NaC are weak. At a catHEC concentration of 2 wt %, incipient phase separation is approached at concentrations of NaC and NaDC of 32.5 and 19.3 mM, respectively. The rheological results show strong interactions and a prominent viscosification effect for the catHEC/NaDC system but only moderate interactions for the catHEC/NaC system. Both cryogenic transmission electron microscopy and small-angle X-ray scattering results display fundamental structural differences between the two systems, which may explain the stronger interactions in the presence of NaDC. The surmise is that the extended structures formed in the presence of NaDC can easily form connections and entanglements in the network.


Assuntos
Ácidos e Sais Biliares , Ácido Desoxicólico , Ácido Desoxicólico/química , Ácido Desoxicólico/metabolismo , Micelas , Celulose , Fibras na Dieta
3.
Gels ; 7(4)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34842656

RESUMO

The rheological changes that occur during the chemical gelation of semidilute solutions of chitosan in the presence of the low-toxicity agent glyceraldehyde (GCA) are presented and discussed in detail. The entanglement concentration for chitosan solutions was found to be approximately 0.2 wt.% and the rheological experiments were carried out on 1 wt.% chitosan solutions with various amounts of GCA at different temperatures (25 °C and 40 °C) and pH values (4.8 and 5.8). High crosslinker concentration, as well as elevated temperature and pH close to the pKa value (pH ≈ 6.3-7) of chitosan are three parameters that all accelerate the gelation process. These conditions also promote a faster solid-like response of the gel-network in the post-gel region after long curing times. The mesh size of the gel-network after a very long (18 h) curing time was found to contract with increasing level of crosslinker addition and elevated temperature. The gelation of chitosan in the presence of other chemical crosslinker agents (glutaraldehyde and genipin) is discussed and a comparison with GCA is made. Small angle neutron scattering (SANS) results reveal structural changes between chitosan solutions, incipient gels, and mature gels.

4.
ACS Appl Bio Mater ; 4(9): 6832-6842, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006983

RESUMO

As a potent nonviral system for biomolecular delivery to neurons via their axons, we have studied molecular characteristics of lysinated fluorescent dextran nanoconjugates with degrees of conjugation of 0.54-15.2 mol lysine and 0.25-7.27 mol tetramethyl rhodamine isothiocyanate (TRITC) per mol dextran. We studied the influence of conjugation with lysine and TRITC on the size and structure of different molecular weight dextrans and their mobility within axons. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) experiments revealed significant differences in the size and structure of unmodified and modified dextrans. Unexpectedly, lower-molecular-weight conjugated dextrans exhibited higher molecular volumes, which we propose is due to fewer intramolecular interactions than in higher-molecular-weight conjugated dextrans. Assessment of retrograde and anterograde movement of lysine- and TRITC-conjugated dextrans in axons in the lumbar spinal cord of chicken embryos showed that lower-molecular-weight dextrans translocate more efficiently than higher-molecular-weight dextrans, despite having larger molecular volumes. This comparative characterization of different molecular weight dextrans will help define optimal features for intracellular delivery.


Assuntos
Dextranos , Lisina , Animais , Embrião de Galinha , Dextranos/farmacologia , Corantes Fluorescentes/química , Nanoconjugados , Neurônios , Rodaminas
5.
Langmuir ; 37(1): 160-170, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33373239

RESUMO

Quasi-two-dimensional (2D) nanolayers, such as graphene oxide or clay layers, adhere to gas-liquid or liquid-liquid interfaces. Particularly, clays are of wide general interest in this context because of their extensive and crucial use as Pickering emulsion stabilizers, as well as for their ability to provide colloidosome capsules. So far, clays could only be localized at oil-water or air-saline-water interfaces in aggregated states, while our results now show that clay nanosheets without any modification can be located at air-deionized-water interfaces. The clay mineral used in the present work is synthetic fluorohectorite with a very high aspect ratio and superior quality in homogeneity and charge distribution compared to other clay minerals. This clay mineral is more suitable for achieving unmodified clay anchoring to fluid interfaces compared to other clay minerals used in previous works. In this context, we studied clay nanosheet organization at the air-water interface by combining different experimental methods: Langmuir-Blodgett trough studies, scanning electron microscopy (SEM) studies of film deposits, grazing-incidence X-ray off-specular scattering (GIXOS), and Brewster angle microscopy (BAM). Clay films formed at the air-water interface could be transferred to solid substrates by the Langmuir-Schaefer method. The BAM results indicate a dynamic equilibrium between clay sheets on the interface and in the subphase. Because of this dynamic equilibrium, the Langmuir monolayer surface pressure does not change significantly when pure clay sheets are spread on the liquid surface. However, also, GIXOS results confirm that there are clay nanosheets at the air-water interface. In addition, we find that clay sheets modified by a branched polymer are much more likely to be confined to the interface.

6.
Macromolecules ; 53(23): 10686-10698, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33335341

RESUMO

Self-assembly of amphiphilic polymers into micelles is an archetypical example of a "self-confined" system due to the formation of micellar cores with dimensions of a few nanometers. In this work, we investigate the chain packing and resulting shape of C n -PEOx micelles with semicrystalline cores using small/wide-angle X-ray scattering (SAXS/WAXS), contrast-variation small-angle neutron scattering (SANS), and nuclear magnetic resonance spectroscopy (NMR). Interestingly, the n-alkyl chains adopt a rotator-like conformation and pack into prolate ellipses (axial ratio ϵ ≈ 0.5) in the "crystalline" region and abruptly arrange into a more spheroidal shape (ϵ ≈ 0.7) above the melting point. We attribute the distorted spherical shape above the melting point to thermal fluctuations and intrinsic rigidity of the n-alkyl blocks. We also find evidence for a thin dehydrated PEO layer (≤1 nm) close to the micellar core. The results provide substantial insight into the interplay between crystallinity and molecular packing in confinement and the resulting overall micellar shape.

7.
Nanomaterials (Basel) ; 10(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142887

RESUMO

Iron oxide nanoparticles are the basic components of the most promising magnetoresponsive nanoparticle systems for medical (diagnosis and therapy) and bio-related applications. Multi-core iron oxide nanoparticles with a high magnetic moment and well-defined size, shape, and functional coating are designed to fulfill the specific requirements of various biomedical applications, such as contrast agents, heating mediators, drug targeting, or magnetic bioseparation. This review article summarizes recent results in manufacturing multi-core magnetic nanoparticle (MNP) systems emphasizing the synthesis procedures, starting from ferrofluids (with single-core MNPs) as primary materials in various assembly methods to obtain multi-core magnetic particles. The synthesis and functionalization will be followed by the results of advanced physicochemical, structural, and magnetic characterization of multi-core particles, as well as single- and multi-core particle size distribution, morphology, internal structure, agglomerate formation processes, and constant and variable field magnetic properties. The review provides a comprehensive insight into the controlled synthesis and advanced structural and magnetic characterization of multi-core magnetic composites envisaged for nanomedicine and biotechnology.

8.
Langmuir ; 36(43): 12887-12899, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32960616

RESUMO

Mixtures of amphiphilic polymers and surfactants are used in a wide range of applications, e.g., pharmaceuticals, detergents, cosmetics, and drug delivery systems. Still, many questions remain on how the structure and, in particular, the kinetics of block copolymer micelles are affected in the presence of surfactants and what controls the solubilization kinetics. In this work, we have studied the stability and solubilization kinetics of block copolymer micelles upon the addition of the surfactant sodium dodecyl sulfate (SDS) using small-angle X-ray/neutron scattering. The ability of the surfactant to dissolve polymer micelles or form mixed micelles has been investigated using two types of amphiphilic polymers, poly(ethylene-alt-propylene)-poly(ethylene oxide) (PEP1-PEO20) and n-alkyl-functionalized PEO (C28-PEO5). The exchange kinetics of C28-PEO5 micelles are in the order of hours, while PEP1-PEO20 micelles are known to be frozen on a practical timescale. In this work, we show that the addition of SDS to PEP1-PEO20 provides virtually no solubilization, even after an extended period of time. However, upon adding SDS to C28-PEO5 micelles, we observe micellar dissolution and formation of mixed micelles occurring on the timescale of hours. Using a coexistence model of mixed and neat micelles, the SAXS data were analyzed to provide detailed structural parameters over time. First, we observe a fast fragmentation/fission step followed by a slow reorganization process. The latter process is essentially independent of concentration at low volume fraction but is greatly accelerated at larger concentrations. This might indicate a crossover from a predominance of molecular exchange to fusion/fission processes.

9.
J Control Release ; 321: 312-323, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32067995

RESUMO

Tuberculosis represents a major global health problem for which improved approaches are needed to shorten the course of treatment and to combat the emergence of resistant strains. The development of effective and safe nanobead-based interventions can be particularly relevant for increasing the concentrations of antitubercular agents within the infected site and reducing the concentrations in the general circulation, thereby avoiding off-target toxic effects. In this work, rifampicin, a first-line antitubercular agent, was encapsulated into biocompatible and biodegradable polyester-based nanoparticles. In a well-established BALB/c mouse model of pulmonary tuberculosis, the nanoparticles provided improved pharmacokinetics and pharmacodynamics. The nanoparticles were well tolerated and much more efficient than an equivalent amount of free rifampicin.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Rifampina , Tuberculose , Animais , Antibióticos Antituberculose/farmacocinética , Antituberculosos , Portadores de Fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas , Rifampina/farmacocinética , Tuberculose/tratamento farmacológico
10.
Macromolecules ; 52(3): 1317-1326, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31496543

RESUMO

Poly(2-isopropyl-2-oxazoline)-b-poly(lactide) (PiPOx-b-PLA) diblock copolymers comprise two miscible blocks: the hydrophilic and thermosensitive PiPOx and the hydrophobic PLA, a biocompatible and biodegradable polyester. They self-assemble in water, forming stable dispersions of nanoparticles with hydrodynamic radii (R h) ranging from ∼18 to 60 nm, depending on their molar mass, the relative size of the two blocks, and the configuration of the lactide unit. Evidence from 1H nuclear magnetic resonance spectroscopy, light scattering, small-angle neutron scattering, and cryo-transmission electron microscopy indicates that the nanoparticles do not adopt the typical core-shell morphology. Aqueous nanoparticle dispersions heated from 20 to 80 °C were monitored by turbidimetry and microcalorimetry. Nanoparticles of copolymers containing a poly(dl-lactide) block coagulated irreversibly upon heating to 50 °C, forming particles of various shapes (R h ∼ 200-500 nm). Dispersions of PiPOx-b-poly(l-lactide) coagulated to a lesser extent or remained stable upon heating. From the entire experimental evidence, we conclude that PiPOx-b-PLA nanoparticles consist of a core of PLA/PiPOx chains associated via dipole-dipole interactions of the PLA and PiPOx carbonyl groups. The core is surrounded by tethered PiPOx loops and tails responsible for the colloidal stability of the nanoparticles in water. While the core of all nanoparticles studied contains associated PiPOx and PLA blocks, fine details of the nanoparticles morphology vary predictably with the size and composition of the copolymers, yielding particles of distinctive thermosensitivity in aqueous dispersions.

11.
J Colloid Interface Sci ; 553: 512-523, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234124

RESUMO

HYPOTHESIS: Poly(vinyl alcohol)-g-poly(methyl methacrylate) (PVA-g-PMMA) amphiphilic copolymers self-assemble to form multi-micellar colloidal systems. EXPERIMENTS: A PVA-g-PMMA copolymer containing 16-17% w/w of PMMA was synthesized by the free radical graft polymerization of methyl methacrylate on a PVA backbone by utilizing cerium(IV) ammonium nitrate as initiator and tetramethylethylenediamine (TEMED) as initiation activator. The aggregation behavior of the copolymer in water was comprehensively characterized by dynamic light scattering (DLS) and static light scattering (SLS), small angle neutron scattering (SANS), asymmetrical flow field-flow fractionation (A4F) and transmission electron microscopy (TEM). The colloidal stability before and after non-covalent crosslinking of PVA domains with boric acid was assessed by DLS. Finally, nanoparticles were nano spray-dried. FINDINGS: This copolymer self-assembles in water to form a complex nanostructure of low aggregation number particles (ca. 12-15 nm in diameter) that aggregate into larger ones with size ca. 60-80 nm, as determined by SANS and TEM. In addition, boric acid-crosslinking preserves the nanoparticle size, while conferring full physical stability under extreme dilution conditions. Nano spray-drying consolidates the crosslnking and enables the production of a dry flowing powder that upon re-dispersion in water regenerates the nanoparticles without major size changes.

12.
Carbohydr Polym ; 212: 412-420, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832875

RESUMO

In this work, we synthesized and characterized the self-assembly behavior of a chitosan-poly(methyl methacrylate) graft copolymer and the properties of the formed nanoparticles by static and dynamic light scattering, small-angle neutron scattering, and transmission electron microscopy. Overall, our results indicate that the hydrophobization of the chitosan side-chain with PMMA leads to a complex array of small unimolecular and/or small-aggregation number "building blocks" that further self-assemble into larger amphiphilic nanoparticles.

13.
Sci Rep ; 8(1): 11827, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087394

RESUMO

In order to mitigate climate change driven by the observed high levels of carbon dioxide (CO2) in the atmosphere, many micro and nano-porous materials are being investigated for CO2 selectivity, capture and storage (CCS) purposes, including zeolites, metal organic frameworks (MOFs), functionalized polymers, activated carbons and nano-silicate clay minerals. Key properties include availability, non-toxicity, low cost, stability, energy of adsorption/desorption, sorbent regeneration, sorption kinetics and CO2 storage capacity. Here, we address the crucial point of the volumetric capture and storage capacity for CO2 in a low cost material which is natural, non-toxic, and stable. We show that the nano-silicate Nickel Fluorohectorite is able to capture 0.79 metric tons of CO2 per m3 of host material - one of the highest capacities ever achieved - and we compare volumetric and gravimetric capacity of the best CO2 sorbent materials reported to date. Our results suggest that the high capture capacity of this fluorohectorite clay is strongly coupled to the type and valence of the interlayer cation (here Ni2+) and the high charge density, which is almost twice that of montmorillonite, resulting in the highest reported CO2 uptake among clay minerals.

14.
J Synchrotron Radiat ; 25(Pt 3): 915-917, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714205

RESUMO

Commissioning results of a liquid sample cell for X-ray reflectivity studies with an in situ applied electrical field are presented. The cell consists of a Plexiglas container with lateral Kapton windows for air-liquid and liquid-liquid interface studies, and was constructed with grooves to accept plate electrodes on the walls parallel to the direction of the beam. Both copper and ITO plate electrodes have been used, the latter being useful for simultaneous optical studies. Commissioning tests were made at the I07 beamline of the Diamond Light Source.

15.
J Colloid Interface Sci ; 524: 245-255, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655143

RESUMO

In biomedical applications, PEGylation is frequently utilized to enhance the nanoparticles (NPs) capability for long systemic circulation times in the blood and it is also crucial to stabilize the NPs and thereby minimize their ability to agglomerate. In this study, we have synthesized poly(N-isopropylacrylamide) (PNIPAAM) nanogels with covalently attached PEG chains of different length and PEG coating densities. It is observed that in the absence of PEG coating the nanogels aggregate at elevated temperatures. It is found from dynamic light scattering (DLS) that both increased PEG length and enhanced PEG coating density have crucial influence on the stability of the nanogels. The results show that long PEG chains have a stronger impact on the shielding ability of the PEG layer on the nanogels than a high coating density of short chains. The small angle neutron scattering (SANS) measurements on PEG-coated nanogels indicate that the coated layer contract at higher temperatures but still the particles are stabilized. The bare PNIPAAM nanogels can be electrostatically stabilized by adding a small amount of an ionic surfactant.

16.
Phys Chem Chem Phys ; 20(4): 2585-2596, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29318229

RESUMO

Understanding self-assembly of amphiphilic copolymers in aqueous solution is an important issue in many areas, e.g., in order to tailor-make carriers for drugs and genes. We have synthesized modified versions of the copolymer of type PEO-PPO-PEO (Pluronic, F127), with short (PCL(5)) or long (PCL(11)) PCL blocks at both ends. Turbidity, dynamic light scattering (DLS), small angle neutron scattering (SANS), and rheology measurements were carried out on dilute aqueous solutions of these polymers to investigate their self-assembly behavior. The DLS results clearly show that both micellization and inter-micellization can be controlled by polymer concentration, temperature, and length of the PCL block. The interplay between unimers, micelles, and clusters of micelles could be monitored and the size and size distribution of the species were determined. The SANS data could be portrayed by a spherical core-shell model at all considered conditions of temperature and concentration for F127 and PCL(5) apart from F127 at the lowest temperature measured. The SANS data for PCL(11) were described by a spherical core-shell model at low temperatures, whereas at elevated temperatures asymmetric sub-structures appeared and a cylindrical core-shell model was employed in the analysis of the data. The appearance of pronounced correlation peaks at elevated temperatures signalizes marked intermicellar interactions. The shear viscosity data revealed a minor shear thinning effect, suggesting that the interchain structures are rather stable and not easily disrupted. The work shows that PCL-modification of Pluronic has a large influence on the self-assembly process and on the final structure of the assemblies.


Assuntos
Poloxâmero/química , Poliésteres/química , Água/química , Difusão Dinâmica da Luz , Espectroscopia de Ressonância Magnética , Nefelometria e Turbidimetria , Difração de Nêutrons , Reologia , Espalhamento a Baixo Ângulo , Resistência ao Cisalhamento , Temperatura
17.
J Phys Chem B ; 121(18): 4885-4899, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28430448

RESUMO

Thermoresponsive amphiphilic biodegradable block copolymers of the type poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) (PCLA-PEGm-PCLA) have great potential for various biomedical applications. In the present study, we have surveyed the effects of PEG spacer length (m = 1000 and 1500), temperature, and polymer concentration on the self-assembling process to form supramolecular structures in aqueous solutions of the PCLA-PEGm-PCLA copolymer. This copolymer has a lower critical solution temperature, and the cloud point depends on both concentration and PEG length. Thermoreversible hydrogels are formed in the semidilute regime; the gel windows in the phase diagrams can be tuned by the concentration and length of the PEG spacer. The rheological properties of both dilute and semidilute samples were characterized; especially the sol-to-gel transition was examined. Small-angle neutron scattering (SANS) experiments reveal fundamental structural differences between the two copolymers for both dilute and semidilute samples. The intensity profiles for the copolymer with the long PEG spacer could be described by a spherical core-shell model over a broad temperature domain, whereas the copolymer with the short hydrophilic spacer forms rod-like species over an extended temperature range. This finding is supported by cryo-TEM images. At temperatures approaching macroscopic phase separation, both copolymers seem to assume extended rod-like structures.

18.
Macromol Biosci ; 16(12): 1838-1852, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27739629

RESUMO

The thermoresponsive amphiphilic block copolymer poly(d,l-lactic acid-co-glycolic acid)-block-poly(ethylene glycol)-block-poly(d,l-lactic acid-co-glycolic acid) (PLGA-PEGn -PLGA), which exhibits a reversible temperature-induced sol-gel transition at higher polymer concentrations in aqueous solution has attached a great deal of interest because of its potential in biomedical applications. In the present work, the length of the hydrophobic PLGA blocks is kept constant, whereas the length of the hydrophilic PEG block is altered and this variation has a pronounced impact on the phase behavior of the aqueous samples and the structure of the polymer. A short PEG block promotes gelation at a low temperature, whereas a longer PEG block shifts the gelation point to higher temperature. By using a combination of turbidity, rheology, and small angle neutron scattering (SANS) methods, the authors have revealed dramatic temperature effects. In dilute solution, the SANS experiments expose asymmetric ellipsoid structures for the copolymer with the short PEG-spacer, whereas spherical core-shell structure is observed for the polymer with long PEG-spacer. In the semidilute concentration regime, SANS measurements disclose similar profiles for the two copolymers. In a broad temperature interval, the transition from spherical core-shell micelles to cylindrical structure and packing of cylinders is observed.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Polietilenoglicóis/química , Poliglactina 910/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Reologia , Soluções , Temperatura
19.
Langmuir ; 31(50): 13519-27, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26616587

RESUMO

A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.


Assuntos
Ácidos e Sais Biliares/química , Ácido Glicodesoxicólico/química , Poloxaleno/química , Poloxaleno/síntese química , Água/química , Estrutura Molecular , Soluções
20.
J Colloid Interface Sci ; 394: 277-83, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23332938

RESUMO

This article presents the characterization of two self-associated structures, a C(80)-tetraacid (also known as ARN), which is an aliphatic molecule present in crude oil and responsible for the formation of deposits, and BP-10, a molecule designed to model the properties of the C(80)-tetraacid. These molecules have four carboxylic functions at the end of four interconnected hydrocarbon chains and can be dissolved in aqueous solution and in basic media. In this paper we have used small-angle neutron scattering (SANS) as the main method to study the tetrameric acids in solution. SANS measurements show that the two molecules (in sodium form) exhibit very different types of aggregation properties in aqueous solution. More specifically, Na(4)BP-10 forms nanometer-sized micelles with an aggregation number close to 5 (at concentrations above the critical micellar concentration) in both 20 mM NaCl and 0.9 wt.% 1-butanol media. On the contrary fully ionised C(80)-TA forms very large structures in pure D(2)O and NaCl 20 mM, so large that their exact dimensions could not be determined by SANS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...