Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 575(Pt 3): 887-99, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16809373

RESUMO

Historically, an increase in intracellular H(+) (decrease in cell pH) was thought to contribute to muscle fatigue by direct inhibition of the cross-bridge leading to a reduction in velocity and force. More recently, due to the observation that the effects were less at temperatures closer to those observed in vivo, the importance of H(+) as a fatigue agent has been questioned. The purpose of this work was to re-evaluate the role of H(+) in muscle fatigue by studying the effect of low pH (6.2) on force, velocity and peak power in rat fast- and slow-twitch muscle fibres at 15 degrees C and 30 degrees C. Skinned fast type IIa and slow type I fibres were prepared from the gastrocnemius and soleus, respectively, mounted between a force transducer and position motor, and studied at 15 degrees C and 30 degrees C and pH 7.0 and 6.2, and fibre force (P(0)), unloaded shortening velocity (V(0)), force-velocity, and force-power relationships determined. Consistent with previous observations, low pH depressed the P(0) of both fast and slow fibres, less at 30 degrees C (4-12%) than at 15 degrees C (30%). However, the low pH-induced depressions in slow type I fibre V(0) and peak power were both significantly greater at 30 degrees C (25% versus 9% for V(0) and 34% versus 17% for peak power). For the fast type IIa fibre type, the inhibitory effect of low pH on V(0) was unaltered by temperature, while for peak power the inhibition was reduced at 30 degrees C (37% versus 18%). The curvature of the force-velocity relationship was temperature sensitive, and showed a higher a/P(0) ratio (less curvature) at 30 degrees C. Importantly, at 30 degrees C low pH significantly depressed the ratio of the slow type I fibre, leading to less force and velocity at peak power. These data demonstrate that the direct effect of low pH on peak power in both slow- and fast-twitch fibres at near-in vivo temperatures (30 degrees C) is greater than would be predicted based on changes in P(0), and that the fatigue-inducing effects of low pH on cross-bridge function are still substantial and important at temperatures approaching those observed in vivo.


Assuntos
Contração Muscular , Fadiga Muscular , Músculo Esquelético/fisiologia , Temperatura , Animais , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Fibras Musculares de Contração Rápida/química , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/química , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/química , Ratos , Ratos Sprague-Dawley
2.
J Appl Physiol (1985) ; 90(6): 2203-11, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11356784

RESUMO

The purpose of this investigation was to study the effects of a 17-day spaceflight on the contractile properties of individual fast- and slow-twitch fibers isolated from biopsies of the fast-twitch gastrocnemius muscle of four male astronauts. Single chemically skinned fibers were studied during maximal Ca2+-activated contractions with fiber myosin heavy chain (MHC) isoform expression subsequently determined by SDS gel electrophoresis. Spaceflight had no significant effect on the mean diameter or specific force of single fibers expressing type I, IIa, or IIa/IIx MHC, although a small reduction in average absolute force (P(o)) was observed for the type I fibers (0.68 +/- 0.02 vs. 0.64 +/- 0.02 mN, P < 0.05). Subject-by-flight interactions indicated significant intersubject variation in response to the flight, as postflight fiber diameter and P(o) where significantly reduced for the type I and IIa fibers obtained from one astronaut and for the type IIa fibers from another astronaut. Average unloaded shortening velocity [V(o), in fiber lengths (FL)/s] was greater after the flight for both type I (0.60 +/- 0.03 vs. 0.76 +/- 0.02 FL/s) and IIa fibers (2.33 +/- 0.25 vs. 3.10 +/- 0.16 FL/s). Postflight peak power of the type I and IIa fibers was significantly reduced only for the astronaut experiencing the greatest fiber atrophy and loss of P(o). These results demonstrate that 1) slow and fast gastrocnemius fibers show little atrophy and loss of P(o) but increased V(o) after a typical 17-day spaceflight, 2) there is, however, considerable intersubject variation in these responses, possibly due to intersubject differences in in-flight physical activity, and 3) in these four astronauts, fiber atrophy and reductions in P(o) were less for slow and fast fibers obtained from the phasic fast-twitch gastrocnemius muscle compared with slow and fast fibers obtained from the slow antigravity soleus [J. J. Widrick, S. K. Knuth, K. M. Norenberg, J. G. Romatowski, J. L. W. Bain, D. A. Riley, M. Karhanek, S. W. Trappe, T. A. Trappe, D. L. Costill, and R. H. Fitts. J Physiol (Lond) 516: 915-930, 1999].


Assuntos
Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Voo Espacial , Atrofia , Cálcio/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/ultraestrutura , Fibras Musculares de Contração Lenta/ultraestrutura , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura , Miofibrilas/fisiologia
3.
J Physiol ; 516 ( Pt 3): 915-30, 1999 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10200437

RESUMO

1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force production had on absolute peak power.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Voo Espacial , Ausência de Peso/efeitos adversos , Adulto , Sinalização do Cálcio/fisiologia , Eletroforese em Gel de Poliacrilamida , Humanos , Masculino , Microscopia Eletrônica , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo
4.
J Comp Physiol B ; 167(3): 197-203, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9151430

RESUMO

The effect of various activity regimes on metabolism of pigeon pectoralis was examined by measurement of blood lactate following exercise, total lactate dehydrogenase activity of pectoral muscle, and proportions of specific isoenzymes of pectoral muscle lactate dehydrogenase. Sprint-trained birds had the highest pectoral muscle lactate dehydrogenase activity (1409 IU.g-1 wet tissue), while endurance-trained birds had the highest peak lactate levels (287 mg.dl-1, extra-polated from decay curves) and fastest half-time of the lactate response (4.8 min) following exercise, but the lowest lactate dehydrogenase activity (115 IU.g-1 wet tissue). Immobilization of one wing for 3 weeks following endurance training produced a marked increase in lactate dehydrogenase activity of the immobilized muscle, compared to that in the contralateral pectoralis and endurance-trained muscle. Aerobic forms of the lactate dehydrogenase enzyme (that favor conversion of lactate to pyruvate) predominated in pectoral muscle of endurance-trained birds, while cage-confined birds exhibited primarily the anaerobic isoenzymes. These results demonstrate that conversion of pectoral muscle lactate dehydrogenase isoenzymes, total lactate dehydrogenase activity, and half-time of lactate response after exercise is dependent on activity regime in pigeons. In this respect, pigeon pectoral muscle responds to training and disuse in a manner similar to that of mammalian skeletal muscle.


Assuntos
Columbidae/fisiologia , L-Lactato Desidrogenase/metabolismo , Músculos Peitorais/metabolismo , Condicionamento Físico Animal/fisiologia , Aerobiose/fisiologia , Anaerobiose/fisiologia , Animais , Metabolismo Energético/fisiologia , Isoenzimas , Ácido Láctico/sangue , Músculos Peitorais/enzimologia , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA