Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
J Microbiol Biotechnol ; 34(6): 1-8, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38755001

RESUMO

Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430- antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.

2.
Eur J Nutr ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705901

RESUMO

PURPOSE: Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function. METHODS: An animal model of CKD was induced by feeding C57BL/6 mice a diet containing 0.2% adenine. KBL409, a strain of Lactobacillus acidophilus, was administered via oral gavage at a dose of 1 × 109 CFU daily. To clarify the underlying mechanisms by which probiotics exert protective effects on mitochondria in CKD, primary mouse tubular epithelial cells stimulated with TGF-ß and p-cresyl sulfate were administered with butyrate. RESULTS: In CKD mice, PGC-1α and AMPK, key mitochondrial energy metabolism regulators, were down-regulated. In addition, mitochondrial dynamics shifted toward fission, the number of fragmented cristae increased, and mitochondrial mass decreased. These alterations were restored by KBL409 administration. KBL409 supplementation also improved defects in fatty acid oxidation and glycolysis and restored the suppressed enzyme levels involved in TCA cycle. Accordingly, there was a concomitant improvement in mitochondrial respiration and ATP production assessed by mitochondrial function assay. These favorable effects of KBL409 on mitochondria ultimately decreased kidney fibrosis in CKD mice. In vitro analyses with butyrate recapitulated the findings of animal study. CONCLUSIONS: This study demonstrates that administration of the probiotic Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function.

3.
J Microbiol ; 62(2): 91-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386273

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.


Assuntos
Dermatite Atópica , Probióticos , Animais , Camundongos , Dermatite Atópica/terapia , Dermatite Atópica/metabolismo , Lactobacillus acidophilus/metabolismo , Citocinas/metabolismo , Pele , Probióticos/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-38411865

RESUMO

Faecalibacterium prausnitzii is one of the most dominant commensal bacteria in the human gut, and certain anti-inflammatory functions have been attributed to a single microbial anti-inflammatory molecule (MAM). Simultaneously, substantial diversity among F. prausnitzii strains is acknowledged, emphasizing the need for strain-level functional studies aimed at developing innovative probiotics. Here, two distinct F. prausnitzii strains, KBL1026 and KBL1027, were isolated from Korean donors, exhibiting notable differences in the relative abundance of F. prausnitzii. Both strains were identified as the core Faecalibacterium amplicon sequence variant (ASV) within the healthy Korean cohort, and their MAM sequences showed a high similarity of 98.6%. However, when a single strain was introduced to mice with dextran sulfate sodium (DSS)-induced colitis, KBL1027 showed the most significant ameliorative effects, including alleviation of colonic inflammation and restoration of gut microbial dysbiosis. Moreover, the supernatant from KBL1027 elevated the secretion of IL-10 cytokine more than that of KBL1026 in mouse bone marrow-derived macrophage (BMDM) cells, suggesting that the strain-specific, anti-inflammatory efficacy of KBL1027 might involve effector compounds other than MAM. Through analysis of the Faecalibacterium pan-genome and comparative genomics, strain-specific functions related to extracellular polysaccharide biosynthesis were identified in KBL1027, which could contribute to the observed morphological disparities. Collectively, our findings highlight the strain-specific, anti-inflammatory functions of F. prausnitzii, even within the same core ASV, emphasizing the influence of their human origin.

5.
Cell Host Microbe ; 31(6): 1021-1037.e10, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37269833

RESUMO

Commensal bacteria are critically involved in the establishment of tolerance against inflammatory challenges, the molecular mechanisms of which are just being uncovered. All kingdoms of life produce aminoacyl-tRNA synthetases (ARSs). Thus far, the non-translational roles of ARSs have largely been reported in eukaryotes. Here, we report that the threonyl-tRNA synthetase (AmTARS) of the gut-associated bacterium Akkermansia muciniphila is secreted and functions to monitor and modulate immune homeostasis. Secreted AmTARS triggers M2 macrophage polarization and orchestrates the production of anti-inflammatory IL-10 via its unique, evolutionary-acquired regions, which mediates specific interactions with TLR2. This interaction activates the MAPK and PI3K/AKT signaling pathways, which converge on CREB, leading to an efficient production of IL-10 and suppression of the central inflammatory mediator NF-κB. AmTARS restores IL-10-positive macrophages, increases IL-10 levels in the serum, and attenuates the pathological effects in colitis mice. Thus, commensal tRNA synthetases can act as intrinsic mediators that maintain homeostasis.


Assuntos
Treonina-tRNA Ligase , Animais , Camundongos , Treonina-tRNA Ligase/metabolismo , Interleucina-10/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Verrucomicrobia/metabolismo , Homeostase , RNA de Transferência/metabolismo
6.
J Microbiol ; 61(7): 673-682, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314676

RESUMO

Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.


Assuntos
Colite , Lacticaseibacillus rhamnosus , Probióticos , Animais , Camundongos , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Colite/terapia , Colo/imunologia , Colo/microbiologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/terapia , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Biomarcadores/análise , Microbioma Gastrointestinal , Biodiversidade , Ácidos Graxos Voláteis/metabolismo , Administração Oral , Lactobacillaceae/classificação , Lactobacillaceae/fisiologia
7.
J Microbiol ; 61(5): 579-587, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37233907

RESUMO

Norovirus (NoV) is the most common viral cause of acute gastroenteritis worldwide. Vitamin A has demonstrated the potential to protect against gastrointestinal infections. However, the effects of vitamin A on human norovirus (HuNoV) infections remain poorly understood. This study aimed to investigate how vitamin A administration affects NoV replication. We demonstrated that treatment with retinol or retinoic acid (RA) inhibited NoV replication in vitro based on their effects on HuNoV replicon-bearing cells and murine norovirus-1 (MNV-1) replication in murine cells. MNV replication in vitro showed significant transcriptomic changes, which were partially reversed by retinol treatment. RNAi knockdown of CCL6, a chemokine gene that was downregulated by MNV infection but upregulated by retinol administration, resulted in increased MNV replication in vitro. This suggested a role of CCL6 in the host response to MNV infections. Similar gene expression patterns were observed in the murine intestine after oral administration of RA and/or MNV-1.CW1. CCL6 directly decreased HuNoV replication in HG23 cells, and might indirectly regulate the immune response against NoV infection. Finally, relative replication levels of MNV-1.CW1 and MNV-1.CR6 were significantly increased in CCL6 knockout RAW 264.7 cells. This study is the first to comprehensively profile transcriptomes in response to NoV infection and vitamin A treatment in vitro, and thus may provide new insights into dietary prophylaxis and NoV infections.


Assuntos
Infecções por Caliciviridae , Vitamina A , Animais , Humanos , Camundongos , Infecções por Caliciviridae/tratamento farmacológico , Quimiocinas/farmacologia , Células RAW 264.7 , Tretinoína , Replicação Viral , Vitamina A/farmacologia
8.
Brain Behav Immun ; 110: 155-161, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893921

RESUMO

The impact of the gut microbiota on glial cell growth and maturation via the gut-brain axis is highlighted herein. Considering that glial activation is crucial for onset and maintenance of neuropathic pain, we assessed the putative involvement of gut microbiota in the pathogenesis of neuropathic pain. Depletion of mouse gut microbiota with chronic antibiotics cocktail treatment prevented nerve injury-induced mechanical allodynia and thermal hyperalgesia both in male and female mice. Furthermore, post-injury treatment with antibiotics cocktail relieved ongoing pain in neuropathic pain-established mice. Upon recolonization of the gut microbiota after cessation of antibiotics, nerve injury-induced mechanical allodynia relapsed. Depletion of gut microbiota accompanied a decrease in nerve injury-induced TNF-α expression in the spinal cord. Notably, nerve injury changed the diversity and composition of the gut microbiome, which was measured by 16 s rRNA sequencing. We then tested if probiotic administration ameliorating dysbiosis affected the development of neuropathic pain after nerve injury. Probiotic treatment for three weeks prior to nerve injury inhibited nerve injury-induced TNF-α expression in the spinal cord and pain sensitization. Our data reveal an unexpected link between the gut microbiota and development and maintenance of nerve injury-induced neuropathic pain, and we propose a novel strategy to relieve neuropathic pain through the gut-brain axis.


Assuntos
Neuralgia , Fator de Necrose Tumoral alfa , Feminino , Camundongos , Masculino , Animais , Fator de Necrose Tumoral alfa/metabolismo , Hiperalgesia/metabolismo , Disbiose/metabolismo , Nociceptividade , Medula Espinal/metabolismo , Neuralgia/metabolismo
9.
Animals (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766312

RESUMO

The supplementation of pig diets with exogenous enzymes is widely used with the expectation that it will improve the efficiency of nutrient utilization, thereby, improving growth performance. This study aims to evaluate the effects of a 0.1% (v/v) multi-enzyme (a mixture of arazyme (2,500,000 Unit/kg), xylanase (200,000 Unit/kg) and mannanase (200,000 Unit/kg)) supplementation derived from invertebrate symbiotic bacteria on pig performance. Here, 256 growing pigs were assigned to control and treatment groups, respectively. The treatment group exhibited a significantly reduced average slaughter age; the final body weight and average daily gain increased compared with that of the control group. In the treatment group, the longissimus muscle showed a remarkable decrease in cooking loss, shear force, and color values with increased essential and non-essential amino acid concentrations. Furthermore, the concentrations of mono- and polyunsaturated fatty acids in the treatment group increased. Feed additive supplementation increased the family of Ruminococcaceae and genera Lactobacillus, Limosilactobacillus, Turicibacter, and Oscillibacter, which play a positive role in the host physiology and health. Predicted metabolic pathway analysis confirmed that operational taxonomic units and predicted amino acid biosynthesis pathways were strongly associated. The results suggest that applying exogenous enzymes derived from invertebrate symbiotic bacteria enhances animal performance.

10.
Exp Mol Med ; 55(1): 158-170, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631664

RESUMO

Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the ß2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.


Assuntos
Células de Kupffer , Hepatopatias Alcoólicas , Camundongos , Animais , Células de Kupffer/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Lipopolissacarídeos/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Inflamação/metabolismo , Apoptose
11.
Gastroenterology ; 164(1): 103-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240952

RESUMO

BACKGROUND & AIMS: Weight loss and exercise intervention have been reported to increase the interaction between Bacteroides spp and Akkermansiamuciniphila (Am), although the underlying mechanisms and consequences of the interaction remain unknown. METHODS: Using a healthy Korean twin cohort (n = 582), we analyzed taxonomic associations with host body mass index. B vulgatus strains were isolated from mice and human subjects to investigate the strain-specific effect of B vulgatus SNUG 40005 (Bvul) on obesity. The mechanisms underlying Am enrichment by Bvul administration were investigated by multiple experiments: (1) in vitro cross-feeding experiments, (2) construction of Bvul mutants with the N-acetylglucosaminidase gene knocked out, and (3) in vivo validation cohorts with different metabolites. Finally, metabolite profiling in mouse and human fecal samples was performed. RESULTS: An interaction between Bvul and Am was observed in lean subjects but was disrupted in obese subjects. The administration of Bvul to mice fed a high-fat diet decreased body weight, insulin resistance, and gut permeability. In particular, Bvul restored the abundance of Am, which decreased significantly after a long-term high-fat diet. A cross-feeding analysis of Am with cecal contents or Bvul revealed that Am enrichment was attributed to metabolites produced during mucus degradation by Bvul. The metabolome profile of mouse fecal samples identified N-acetylglucosamine as contributing to Am enrichment, which was confirmed by in vitro and in vivo experiments. Metabolite network analysis of the twin cohort found that lysine serves as a bridge between N-acetylglucosamine, Bvul, and Am. CONCLUSIONS: Strain-specific microbe-microbe interactions modulate the mucosal environment via metabolites produced during mucin degradation in the gut.


Assuntos
Acetilglucosamina , Akkermansia , Humanos , Camundongos , Animais , Bacteroides/genética , Obesidade/metabolismo , Dieta Hiperlipídica
12.
Antibiotics (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551419

RESUMO

The cocktails of antibiotics are utilized to study the functions of microbiota. There have been studies on the alteration of not only the microbiota composition but also the host's metabolism or immunity. However, the bacterial species associated with these altered physiologic markers are still unclear. Therefore, we supplied mice with drinking water containing ampicillin (AMP), vancomycin (VAN), neomycin (NEO), or metronidazole (MET) to observe the effect of each antibiotic on helper T cells and inflammation-related gene expression and metabolism, including amino acid metabolism and changes in gut microbiota. We observed major changes in gut microbiota in mice treated with AMP and VAN, respectively, immediately after administration. The abundance of the genera Parabacteroides and Akkermansia increased in the AMP and VAN groups, while Prevotella almost disappeared from both groups. The compositional changes in intestinal metabolites in the AMP and VAN groups were more distinct than those in the NEO and MET groups, which was similar to the microbiome results. In particular, the most distinct changes were observed in amino acid related metabolism in AMP and VAN groups; the amounts of phenylalanine and tyrosine were increased in the AMP group while those were decreased in the VAN group. The changed amounts of intestinal amino acids in each of the AMP and VAN groups were correlated with increases in the abundance of the genera Parabacteroides and Akkermansia in the AMP and VAN groups, respectively. The most distinctive changes in intestinal gene expression were observed in the ileum, especially the expression Th17-related genes such as rorgt, il17a, and il17f, which decreased dramatically in the guts of most of the antibiotic-treated groups. These changes were also associated with a significant decrease in Prevotella in both the AMP and VAN groups. Taken together, these findings indicate that changes in gut microbiota as well as host physiology, including host metabolism and immunity, differ depending on the types of antibiotics, and the antibiotic-induced gut microbiota alteration has a correlation with host physiology such as host metabolic or immunological status. Thus, the immune and metabolic status of the host should be taken into account when administering antibiotics.

13.
iScience ; 25(10): 105150, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36193049

RESUMO

A recently developed human PSC-derived skin organoid model has opened up new avenues for studying skin development, diseases, and regeneration. The current model has limitations since the generated organoids are enclosed, circular aggregates with an inside-out morphology with unintended off-target development of cartilage. Here, we first demonstrated that Wnt signaling activation resulted in larger organoids without off-target cartilage. We optimized further using an air-liquid interface (ALI) culture method to recapitulate structural features representative of human skin tissue. Finally, we used the ALI-skin organoid platform to model atopic dermatitis by Staphylococcus aureus (SA) colonization and infection. SA infection led to a disrupted skin barrier and increased production of epidermal- and dermal-derived inflammatory cytokines. Additionally, we found that pre-treatment with Cutibacterium acnes had a protective effect on SA-infected organoids. Thus, this ALI-skin organoid platform may be a useful tool for modeling human skin diseases and evaluating the efficacy of novel therapeutics.

14.
Mol Nutr Food Res ; 66(22): e2101105, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36059191

RESUMO

SCOPE: Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD is aimed. METHODS AND RESULTS: An animal model of CKD is established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice are administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria are improved by administration of KBL409. Ade-CKD mice also exhibit a disrupted intestinal barrier and elevate levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes are attenuated by KBL409. Administration of KBL409 significantly reduces macrophage infiltration and promotes a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway is activated in the kidneys of Ade-CKD and decreases by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increase M2 macrophage polarization factors and decrease profibrotic markers. CONCLUSIONS: These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury.


Assuntos
Probióticos , Insuficiência Renal Crônica , Camundongos , Animais , Lactobacillus acidophilus , Camundongos Endogâmicos C57BL , Fibrose , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Probióticos/farmacologia , Rim/metabolismo , Modelos Animais de Doenças , Adenina/farmacologia , Adenina/metabolismo
15.
Science ; 377(6612): 1328-1332, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36108023

RESUMO

The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Bactérias/classificação , Bactérias/genética , Criança , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Oxigênio/metabolismo
16.
Sci Total Environ ; 848: 157735, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926625

RESUMO

This study evaluated the effects of supplementing feed with arazyme and dietary carbohydrolases derived from invertebrate gut-associated symbionts on the noxious gas emissions, gut microbiota, and host-microbiome interactions of pigs. Here, 270 and 260 growing pigs were assigned to control and treatment groups, respectively. The tested feed additives contained a mixture of arazyme (2,500,000 Unit/kg) and synergetic enzymes, xylanase (200,000 Unit/kg) and mannanase (200,000 Unit/kg), derived from insect gut-associated symbionts in a 7.5:1:1 ratio. The control group was fed a basal diet and the treatment group was fed the basal diet supplemented with 0.1 % enzyme mixture (v/v) for 2 months. Odorous gases were monitored in ventilated air from tested houses. Fecal samples were collected from steel plate under the cage at the completion of the experiment to determine chemical composition, odor emissions, and bacterial communities. There was a significant decrease in the concentration of NH3 (22.5 vs. 11.2 ppm; P < 0.05), H2S (7.35 vs. 3.74 ppm; P < 0.05), trimethylamine (TMA) (0.066 vs. 0.001 ppm; P < 0.05), and p-cresol (0.004 ppm vs. 0 ppm; P < 0.05) at 56 d in treatment group compared with the control group. Moreover, fecal analysis results showed that exogenous enzyme supplementation caused a reduction in VFAs and indole content with approximately >60 % and 72.7 %, respectively. The result of gas emission analysis showed that NH3 (9.9 vs. 5.3 ppm; P < 0.05) and H2S (5.8 vs. 4.1 ppm; P < 0.05) were significantly reduced in the treatment group compared to the control group. The gut microbiota of the treatment group differed significantly from that of the control group, and the treatment group altered predicted metabolic pathways, including sulfur and nitrogen related metabolism, urea degradation. The results demonstrated that supplementing feed with arazyme with dietary carbohydrolases effectively controls noxious gas emissions and improves health and meat quality of pigs.


Assuntos
Microbioma Gastrointestinal , Ração Animal/análise , Animais , Dieta/veterinária , Gases/metabolismo , Indóis , Nitrogênio/metabolismo , Odorantes/análise , Aço , Enxofre , Suínos , Ureia
17.
Sci Rep ; 12(1): 9640, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688918

RESUMO

Inflammatory bowel disease (IBD) refers to disorders involving chronic inflammation of the gastrointestinal tract. Well-established treatments for IBD have not yet to be suggested. To address this gap, we investigated the effects of co-administration of Lactobacillus gasseri (L. gasseri) KBL697 and infliximab (IFX), the first approved tumor necrosis factor (TNF)-alpha inhibitor, on the dextran sodium sulfate-induced colitis mouse model. 2 × 109 colony-forming units/g of L. gasseri KBL697 were administered to seven-week-old female C57BL/6J mice daily by oral gavage. On day three, IFX (5 mg/kg) suspended in 1 × PBS (200 µL) was intravenously injected in the IFX-treated group and all mice were sacrificed on day nine. Co-administration of L. gasseri KBL697 and IFX improved colitis symptoms in mice, including body weight, disease activity index, colon length, and histology score. Additionally, pro-inflammatory cytokines, such as interferon-gamma, interleukin (IL)-2, IL-6, IL-17A, and TNF were significantly decreased, while IL-10, an anti-inflammatory cytokine, was increased. Expression levels of tight junction genes and CD4 + CD25 + Foxp3 + T regulatory cells in the mesenteric lymph nodes were synergistically upregulated with the combined treatment. Furthermore, co-administered mice displayed altered cecum microbial diversity and composition with increases in the genus Prevotella. Related changes in the predicted amino and nucleic acid metabolic pathways were also evident, along with increased acetate and butyrate level. Therefore, the synergistic effect of L. gasseri KBL697 and IFX co-administration is a possible method of prevention and treatment for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Lactobacillus gasseri , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Fatores Imunológicos/farmacologia , Doenças Inflamatórias Intestinais/patologia , Infliximab , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
18.
Gut Microbes ; 14(1): 2078619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613313

RESUMO

Despite a short history since its first isolation, Akkermansia muciniphila has been extensively studied in relation to its effects on human metabolism. A recent human intervention study also demonstrated that the bacterium is safe to use for therapeutic purposes. The best-known effects of A. muciniphila in human health and disease relate to its ability to strengthen gut integrity, modulate insulin resistance, and protect the host from metabolic inflammation. A further molecular mechanism, induction of GLP-1 secretion through ICAM-2 receptor, was recently discovered with the identification of a new bacterial protein produced by A. muciniphila. However, other studies have suggested a detrimental role for A. muciniphila in specific host immune settings. Here, we evaluate the molecular, mechanistic effects of A. muciniphila in host health and suggest some of the missing links to be connected before the organism should be considered as a next-generation biotherapeutic agent.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Akkermansia , Humanos , Verrucomicrobia/metabolismo
19.
Gut Microbes ; 14(1): 2078612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634707

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with high carbohydrate (HC) intake. We investigated whether the relationship between carbohydrate intake and NAFLD is mediated by interactions between gut microbial modulation, impaired insulin response, and hepatic de novo lipogenesis (DNL). Stool samples were collected from 204 Korean subjects with biopsy-proven NAFLD (n = 129) and without NAFLD (n = 75). The gut microbiome profiles were analyzed using 16S rRNA amplicon sequencing. Study subjects were grouped by the NAFLD activity score (NAS) and percentage energy intake from dietary carbohydrate. Hepatic DNL-related transcripts were also analyzed (n = 90). Data from the Korean healthy twin cohort (n = 682), a large sample of individuals without NAFLD, were used for comparison and validation. A HC diet rather than a low carbohydrate diet was associated with the altered gut microbiome diversity according to the NAS. Unlike individuals from the twin cohort without NAFLD, the abundances of Enterobacteriaceae and Ruminococcaceae were significantly different among the NAS subgroups in NAFLD subjects who consumed an HC diet. The addition of these two microbial families, along with Veillonellaceae, significantly improved the diagnostic performance of the predictive model, which was based on the body mass index, age, and sex to predict nonalcoholic steatohepatitis in the HC group. In the HC group, two crucial regulators of DNL (SIRT1 and SREBF2) were differentially expressed among the NAS subgroups. In particular, kernel causality analysis revealed a causal effect of the abundance of Enterobacteriaceae on SREBF2 upregulation and of the surrogate markers of insulin resistance on NAFLD activity in the HC group. Consuming an HC diet is associated with alteration in the gut microbiome, impaired glucose homeostasis, and upregulation of hepatic DNL genes, altogether contributing to NAFLD pathogenesis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Dieta , Carboidratos da Dieta , Humanos , Lipogênese , Hepatopatia Gordurosa não Alcoólica/etiologia , RNA Ribossômico 16S/genética
20.
Front Microbiol ; 13: 719541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432240

RESUMO

Background and Objective: Cluster-based analysis, or community typing, has been attempted as a method for studying the human microbiome in various body niches with the aim of reducing variations in the bacterial composition and linking the defined communities to host health and disease. In this study, we have presented the bacterial subcommunities in the healthy and the diseased population cohorts and have assessed whether these subcommunities can distinguish different host health conditions. Methods: We performed community typing analysis on the sputum microbiome dataset obtained from a healthy Korean twin-family cohort (n = 202) and an external chronic obstructive pulmonary disease (COPD) cohort (n = 324) and implemented a networks analysis to investigate the associations of bacterial metacommunities with host health parameters and microbial interactions in disease. Results: The analysis of the sputum microbiome of a healthy Korean cohort revealed high levels of interindividual variation, which was driven by two dominant bacteria: Neisseria and Prevotella. Community typing of the cohort samples identified three metacommunities, namely, Neisseria 1 (N1), Neisseria 2 (N2), and Prevotella (P), each of which showed different functional potential and links to host traits (e.g., triglyceride levels, waist circumference, and levels of high-sensitivity C-reactive protein). In particular, the Prevotella-dominant metacommunity showed a low-community diversity, which implies an adverse health association. Network analysis of the healthy twin cohort illustrated co-occurrence of Prevotella with pathogenic anaerobic bacteria; this bacterial cluster was negatively associated with high-density lipoproteins but positively correlated with waist circumference, blood pressure, and pack-years. Community typing of the external COPD cohort identified three sub-metacommunities: one exclusively comprising healthy subjects (HSs) and the other two (CS1 and CS2) comprising patients. The two COPD metacommunities, CS1 and CS2, showed different abundances of specific pathogens, such as Serratia and Moraxella, as well as differing functional potential and community diversity. Network analysis of the COPD cohort showed enhanced bacterial coexclusions in the CS metacommunities when compared with HS metacommunity. Conclusion: Overall, our findings point to a potential association between pulmonary Prevotella and host health and disease, making it possible to implement community typing for the diagnosis of heterogenic respiratory disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...