Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(20): e2219683120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155904

RESUMO

During mouse gametogenesis, germ cells derived from the same progenitor are connected via intercellular bridges forming germline cysts, within which asymmetrical or symmetrical cell fate occurs in female and male germ cells, respectively. Here, we have identified branched cyst structures in mice, and investigated their formation and function in oocyte determination. In fetal female cysts, 16.8% of the germ cells are connected by three or four bridges, namely branching germ cells. These germ cells are preferentially protected from cell death and cyst fragmentation and accumulate cytoplasm and organelles from sister germ cells to become primary oocytes. Changes in cyst structure and differential cell volumes among cyst germ cells suggest that cytoplasmic transport in germline cysts is conducted in a directional manner, in which cellular content is first transported locally between peripheral germ cells and further enriched in branching germ cells, a process causing selective germ cell loss in cysts. Cyst fragmentation occurs extensively in female cysts, but not in male cysts. Male cysts in fetal and adult testes have branched cyst structures, without differential cell fates between germ cells. During fetal cyst formation, E-cadherin (E-cad) junctions between germ cells position intercellular bridges to form branched cysts. Disrupted junction formation in E-cad-depleted cysts led to an altered ratio in branched cysts. Germ cell-specific E-cad knockout resulted in reductions in primary oocyte number and oocyte size. These findings shed light on how oocyte fate is determined within mouse germline cysts.


Assuntos
Cistos , Oócitos , Masculino , Feminino , Animais , Camundongos , Células Germinativas , Citoplasma , Organelas , Gametogênese , Oogênese
2.
Oncotarget ; 12(20): 2039-2050, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34611478

RESUMO

Daratumumab (DARA) is an FDA-approved high-affinity monoclonal antibody targeting CD38 that has shown promising therapeutic efficacy in double refractory multiple myeloma (MM) patients. Despite the well-established clinical efficacy of DARA, not all heavily pretreated patients respond to single-agent DARA, and the majority of patients who initially respond eventually progress. Antibody-drug conjugates (ADCs) combine the highly targeted tumor antigen recognition of antibodies with the cell killing properties of chemotherapy for effective internalization and processing of the drug. In this study, we evaluated the anti-tumor efficacy of DARA conjugated to the maytansine derivative, mertansine (DM1), linked via a non-cleavable bifunctional linker. The ADC was labelled with the near-infrared (NIR) fluorophore IRDye800 (DARA-DM1-IR) to evaluate its stability, biodistribution and pharmacokinetics in vitro and in vivo. We demonstrated the conjugation of: 1) DM1 enhanced tumor-killing efficacy of the native DARA and 2) IRDye800 allowed for visualization of uptake and tumor targeting ability of the ADC. With the advent of other classes of immunoconjugates for use in MM, we reasoned that such imaging techniques can be utilized to evaluate other promising conjugates in preclinical MM models on a whole-body and cellular level.

3.
Mol Imaging Biol ; 23(2): 186-195, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32964391

RESUMO

PURPOSE: Cluster of differentiation 38 (CD38) is a promising therapeutic target in multiple myeloma (MM) patients and has resulted in the development of several CD38 immunotherapies. Current methods to evaluate CD38 expression in the preclinical setting include ex vivo flow cytometry and immunohistochemistry, which can be cumbersome and do not give whole-body information. In vivo imaging technologies such as positron emission tomography rely on decay of radioisotopes, limiting the number of molecular interactions observed at any given time point. Here, we demonstrate the use of near-infrared (NIR) fluorescence imaging for spatiotemporal monitoring of CD38 expression in preclinical MM using the anti-CD38 daratumumab (DARA) conjugated to the NIR fluorophore IRDye800CW (DARA-IRDye800). PROCEDURES: Stability studies with human serum and binding assays with human myeloma cells were performed with DARA-IRDye800. Immunocompromised mice with intra- and extramedullary tumors (n = 5/group) were administered with DARA-IRDye800 for in vivo imaging up to 7 days after injection. Ex vivo biodistribution and flow cytometry studies were performed to validate in vivo imaging results. A separate therapy study was performed in mice with intramedullary tumors that were treated and not treated with DARA at a therapeutic dose (n = 7/group). DARA-IRDye800 was administered for subsequent in vivo and ex vivo imaging in both cohorts of mice. RESULTS: DARA-IRDye800 maintained stability and had high affinity for CD38 (KD = 3.5 ± 0.05 nM). DARA-IRDye800 demonstrated a 5- and 18-fold increase in contrast in tumor-bearing regions of mice with extra- and intramedullary MM. Finally, mice treated with therapeutic doses of DARA and imaged with DARA-IRDye800 showed an 11-fold decrease in fluorescence intensities in vivo compared with untreated controls. CONCLUSIONS: Our studies establish DARA-IRDye800 as a promising contrast agent for preclinical evaluation of CD38 expression and for further investigating myeloma engraftment and kinetics in relation to anti-CD38 therapies.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Anticorpos Monoclonais/farmacocinética , Indóis/farmacocinética , Glicoproteínas de Membrana/metabolismo , Mieloma Múltiplo/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Camundongos , Camundongos SCID , Imagem Molecular/métodos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncotarget ; 8(1): 596-609, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27880942

RESUMO

Previously, the authors have identified that c-Met mediates reactivation of the PI3K/AKT pathway following BRAF inhibitor treatment in BRAF (V600E) mutant anaplastic thyroid cancer, thereby contributing to the acquired drug resistance. Therefore dual inhibition of BRAF and c-Met led to sustained treatment response, thereby maximizing the specific anti-tumor effect of targeted therapy. The present study goes one step further and aims to investigate the effect of acquired resistance of BRAF inhibitor on epithelial-to-mesenchymal transition (EMT) in BRAF mutant thyroid cancer cells and the effect of dual inhibition from combinatorial therapy. Two thyroid cancer cell lines, 8505C and BCPAP were selected and treated with BRAF inhibitor, PLX4032 and its effect on EMT were examined and compared. Further investigation was carried out in orthotopic xenograft mouse models. Unlike BCPAP cells, the BRAF inhibitor resistant 8505C cells showed increased expressions of EMT related markers such as vimentin, ß-catenin, and CD44. The combinatorial treatment of PLX4032 and PHA665752, a c-Met inhibitor reversed EMT. Similar results were confirmed in vivo. c-Met-mediated reactivation of the PI3K/AKT pathway contributes to the drug resistance to PLX4032 in BRAF (V600E) mutant anaplastic thyroid cancer cells and further promotes tumor cell migration and invasion by upregulated EMT mechanism. Dual inhibition of BRAF and c-Met leads to reversal of EMT, suggesting a maximal therapeutic response.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Humanos , Indóis/farmacologia , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA