Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2022: 5199572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193088

RESUMO

Prolonged or excessive stimulation from inhaled toxins may cause oxidative stress and DNA damage that can lead to stress-induced senescence in epithelial cells, which can contribute to several airway diseases. Mounting evidence has shown carbon monoxide (CO) confers cytoprotective effects. We investigated the effects of CO on oxidative stress-induced senescence in human airway epithelium and elucidated the underlying molecular mechanisms. Here, CO pretreatment reduced H2O2-mediated increases in total reactive oxygen species (ROS) production and mitochondrial superoxide in a human bronchial epithelial cell line (BEAS-2B). H2O2 treatment triggered a premature senescence-like phenotype with enlarged and flattened cell morphology accompanied by increased SA-ß-gal activity, cell cycle arrest in G0/G1, reduced cell viability, and increased transcription of senescence-associated secretory phenotype (SASP) genes. Additionally, exposure to H2O2 increased protein levels of cellular senescence markers (p53 and p21), reduced Sirtuin 3 (SIRT3) and manganese superoxide dismutase (MnSOD) levels, and increased p53 K382 acetylation. These H2O2-mediated effects were attenuated by pretreatment with a CO-containing solution. SIRT3 silencing induced mitochondrial superoxide production and triggered a senescence-like phenotype, whereas overexpression decreased mitochondrial superoxide production and alleviated the senescence-like phenotype. Air-liquid interface (ALI) culture of primary human bronchial cells, which becomes a fully differentiated pseudostratified mucociliary epithelium, was used as a model. We found that apical and basolateral exposure to H2O2 induced a vacuolated structure that impaired the integrity of ALI cultures, increased goblet cell numbers, decreased SCGB1A1+ club cell numbers, increased p21 protein levels, and increased SASP gene transcription, consistent with our observations in BEAS-2B cells. These effects were attenuated in the apical presence of a CO-containing solution. In summary, we revealed that CO has a pivotal role in epithelial senescence by regulating ROS production via the SIRT3/MnSOD/p53/p21 pathway. This may have important implications in the prevention and treatment of age-associated respiratory pathologies.


Assuntos
Sirtuína 3 , Monóxido de Carbono/metabolismo , Senescência Celular , Epitélio , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Cell Mol Gastroenterol Hepatol ; 14(2): 245-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35398597

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a major intestinal disease. Excessive inflammation and increased endoplasmic reticulum (ER) stress are the key events in the development of IBD. Search of a genome-wide association study database identified a remarkable correlation between a TM9SF4 single-nucleotide polymorphism and IBD. Here, we aimed to resolve its underlying mechanism. METHODS: The role of TM9SF4 was determined with experimental mouse models of IBD. ER stress cascades, barrier functions, and macrophage polarization in colonic tissues and cells were assessed in vivo and in vitro. The expression of TM9SF4 was compared between inflamed regions of ulcerative colitis patients and normal colon samples. RESULTS: In mouse models of IBD, genetic knockout of the TM9SF4 gene aggravated the disease symptoms. In colonic epithelial cells, short hairpin RNA-mediated knockdown of TM9SF4 expression promoted inflammation and increased ER stress. In macrophages, TM9SF4 knockdown promoted M1 macrophage polarization but suppressed M2 macrophage polarization. Genetic knockout/knockdown of TM9SF4 also disrupted epithelial barrier function. Mechanistically, TM9SF4 deficiency may act through Ca2+ store depletion and cytosolic acidification to induce an ER stress increase. Furthermore, the expression level of TM9SF4 was found to be much lower in the inflamed colon regions of human ulcerative colitis patients than in normal colon samples. CONCLUSIONS: Our study identified a novel IBD-associated protein, TM9SF4, the reduced expression of which can aggravate intestinal inflammation. Deficiency of TM9SF4 increases ER stress, promotes inflammation, and impairs the intestinal epithelial barrier to aggravate IBD.


Assuntos
Colite Ulcerativa , Estresse do Retículo Endoplasmático , Proteínas de Membrana , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout
3.
Cell Mol Immunol ; 19(2): 245-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34848868

RESUMO

We sought to examine the regulatory effect of Meteorin-ß (Metrnß)/Meteorin like (Metrnl)/IL-41 on lung inflammation in allergic asthma. We found that Metrnß was elevated significantly in asthmatic patients and in mice with allergic asthma induced by house dust mite (HDM) extract. Upon exposure to HDM, Metrnß was secreted predominantly by airway epithelial cells and inflammatory cells, including macrophages and eosinophils. The increased Metrnß effectively blocked the development of airway hyperreactivity (AHR) and decreased inflammatory cell airway infiltration and type 2 cytokine production, which was associated with downregulated DC-mediated adaptive immune responses. Moreover, Metrnß impaired the maturation and function of bone marrow-derived dendritic cells in vitro. Asthmatic mice adoptively transferred with dendritic cells isolated from Metrnß-treated allergic mice displayed decreased AHR, airway inflammation, and lung injury. Metrnß also displayed anti-inflammatory properties in immunodeficient SCID mice with allergic asthma and in in vitro 3D ALI airway models. Moreover, blockade of Metrnß by anti-Metrnß antibody treatment promoted the development of allergic asthma. These results revealed the unappreciated protective roles of Metrnß in alleviating DC-mediated Th2 inflammation in allergic asthma, providing the novel treatment strategy of therapeutic targeting of Metrnß in allergic asthma.


Assuntos
Asma , Células Dendríticas , Alérgenos , Animais , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Camundongos , Camundongos SCID , Pyroglyphidae , Células Th2
4.
Lung ; 199(6): 619-627, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34725715

RESUMO

OBJECTIVE: ß2-Adrenoceptor agonists are widely used to treat asthma because of their bronchial-dilation effects. We previously reported that isoprenaline, via the apical and basolateral ß2-adrenoceptor, induced Cl- secretion by activating cyclic AMP (cAMP)-dependent pathways in human bronchial epithelia. Despite these results, whether and how the ß2-adrenoceptor-mediated cAMP-dependent pathway contributes to pro-inflammatory cytokine release in human bronchial epithelia remains poorly understood. METHODS: We investigated ß2-adrenoceptor-mediated signaling pathways involved in the production of two pro-inflammatory cytokines, interleukin (IL)-6 and IL-8, in 16HBE14o- human bronchial epithelia. The effects of isoprenaline or formoterol were assessed in the presence of protein kinase A (PKA), exchange protein directly activated by cAMP (EPAC), Src, and extracellular signal-regulated protein kinase (ERK)1/2 inhibitors. The involvement of ß-arrestin2 was examined using siRNA knockdown. RESULTS: Isoprenaline and formoterol (both ß2 agonists) induced IL-6, but not IL-8, release, which could be inhibited by ICI 118,551 (ß2 antagonist). The PKA-specific inhibitor, H89, partially inhibited IL-6 release. Another intracellular cAMP receptor, EPAC, was not involved in IL-6 release. Isoprenaline-mediated IL-6 secretion was attenuated by dasatinib, a Src inhibitor, and PD98059, an ERK1/2 inhibitor. Isoprenaline treatment also led to ERK1/2 phosphorylation. In addition, knockdown of ß-arrestin2 by siRNA specifically suppressed cytokine release when a high concentration of isoprenaline (1 mM) was used. CONCLUSION: Our results suggest that activation of the ß2-adrenoceptor in 16HBE14o- cells stimulated the PKA/Src/ERK1/2 and/or ß-arrestin2 signaling pathways, leading to IL-6 release. Therefore, our data reveal that ß2-adrenoceptor signaling plays a role in the immune regulation of human airway epithelia.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Interleucina-6 , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , beta-Arrestina 2
5.
Sci Rep ; 10(1): 20719, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244095

RESUMO

Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable channel that is activated by reactive oxygen species (ROS). In many cell types, ROS activate TRPM2 to induce excessive Ca2+ influx, resulting in Ca2+ overload and consequent cell death. Recent studies suggest that TRPM2 may also regulate autophagy in pericytes and cancer cells by acting on the early step of autophagy, i.e. autophagic induction. However, there is no report on the role of TRPM2 in autophagic degradation, which is the late stage of autophagy. In the present study, we found abundant TRPM2 expression in lysosomes/autolysosomes in the primary cultured mouse aortic smooth muscle cells (mASMCs). Nutrient starvation stimulated autophagic flux in mASMCs mainly by promoting autophagic degradation. This starvation-induced autophagic degradation was reduced by TRPM2 knockout. Importantly, starvation-induced lysosomal/autolysosomal acidification and cell death were also substantially reduced by TRPM2 knockout. Taken together, the present study uncovered a novel mechanism that lysosomal TRPM2 facilitates lysosomal acidification to stimulate excessive autolysosome degradation and consequent cell death.


Assuntos
Autofagia/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Morte Celular/fisiologia , Células Cultivadas , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
6.
J Cell Physiol ; 235(11): 8387-8401, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32239700

RESUMO

We investigated the regulation of Cl- secretion by adrenoceptors in polarized 16HBE14o- human bronchial epithelial cells. Treatment with the nonselective ß adrenoceptor agonist isoprenaline stimulated an increase in short-circuit current (ISC ), which was inhibited by the ß adrenoceptor blocker propranolol. Treatment with procaterol, an agonist specific for the ß2 adrenoceptor subtype, stimulated a similar increase in ISC , which was inhibited by the ß2 adrenoceptor antagonist ICI 118551. Inhibitors of cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channel (CaCC), but not K+ channel blockers, were able to inhibit the increase in ISC . "Trimultaneous" recording of ISC and intracellular cyclic adenosine monophosphate (cAMP) and Ca2+ levels in 16HBE14o- epithelia confirmed that the ISC induced by isoprenaline or procaterol involved both cAMP and Ca2+ signaling. Our results demonstrate that ß2 adrenoceptors regulate Cl- secretion in the human airway epithelium by activating apical CFTRs and CaCCs via cAMP-dependent and intracellular Ca2+ -dependent mechanisms, respectively.


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Mucosa Respiratória/metabolismo , Transporte Biológico Ativo , Brônquios/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Transporte de Íons/fisiologia , Transdução de Sinais/fisiologia
7.
Mol Immunol ; 105: 205-212, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553057

RESUMO

Carbon monoxide (CO) is an anti-inflammatory gaseous molecule produced endogenously by heme oxygenases (HOs) HO-1 and HO-2. However, the mechanisms underlying the anti-inflammatory effects of CO in the human bronchial epithelium are still not fully understood. In this study, the cationic peptide poly-l-arginine (PLA) was utilized to induce bronchial epithelial damage and subsequent pro-inflammatory cytokine release in the human bronchial epithelial cell line 16HBE14o-. Expression of both HO-1 and HO-2 after PLA exposure was examined. The polarized secretion of two pro-inflammatory cytokines, interleukin (IL)-6 and IL-8, was determined by ELISA. The anti-inflammatory effects of CO liberated from CO-releasing molecules (CORMs) were examined by both ELISA and western blot analysis. Our results indicate that PLA exposure leads to upregulation of HO-1 expression and p65 NF-κB phosphorylation, as well as IL-6 and IL-8 release. HO-1 induction by hemin or CORMs significantly suppressed IL-6 and IL-8 release. In addition, HO-1 knockdown further increased IL-6 and IL-8 release under basal and PLA-stimulated conditions. Our results thereby demonstrate that the HO-1/CO axis exerts significant anti-inflammatory activity during bronchial epithelial damage caused by cationic protein.


Assuntos
Anti-Inflamatórios/farmacologia , Brônquios/imunologia , Monóxido de Carbono/farmacologia , Heme Oxigenase-1/imunologia , Peptídeos/farmacologia , Mucosa Respiratória/imunologia , Linhagem Celular , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/imunologia , Heme Oxigenase-1/genética , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia
8.
Cell Physiol Biochem ; 49(2): 626-637, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165347

RESUMO

BACKGROUND/AIMS: Carbon monoxide (CO) is an important gas produced endogenously by heme oxygenase (HO) that functions as an anti-inflammatory and in ion channel modulation, but the effects of CO on airway inflammation and ion transport remains unclear. METHODS: The effect of CO on cell damage- and nucleotide-induced pro-inflammatory cytokine release in primary human bronchial epithelia cells (HBE) and in the 16HBE14o- human bronchial epithelial cell line were investigated. The effects of CO on calcium- and cAMP-dependent chloride (Cl-) secretion were examined using a technique that allowed the simultaneous measurement and quantification of real-time changes in signalling molecules (cAMP and Ca2+) and ion transport in a polarised epithelium. RESULTS: CO suppressed the release of interleukin (IL)-6 and IL-8 and decreased the phosphorylation of ERK1/2 and NF-κB p65. Furthermore, CO inhibited UTP-induced increases in calcium and Cl- secretion, and forskolin-induced increases in cAMP and Cl- secretion. CONCLUSIONS: These findings suggest a novel anti-inflammatory role of CO in human bronchial epithelia via interactions with purinergic signalling pathways. Further, CO modulated both the Ca2+- and cAMP-dependent secretion of Cl-.


Assuntos
Monóxido de Carbono/farmacologia , Cloretos/metabolismo , Transporte de Íons/efeitos dos fármacos , Brônquios/citologia , Cálcio/metabolismo , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-6/análise , Interleucina-6/metabolismo , Interleucina-8/análise , Interleucina-8/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Compostos Organometálicos/farmacologia , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição RelA/metabolismo
9.
Mucosal Immunol ; 11(4): 1149-1157, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29545647

RESUMO

Airway epithelial cells harbor the capacity of active Cl- transepithelial transport and play critical roles in modulating innate immunity. However, whether intracellular Cl- accumulation contributes to relentless airway inflammation remains largely unclear. This study showed that, in airway epithelial cells, intracellular Cl- concentration ([Cl-]i) was increased after Pseudomonas aeruginosa lipopolysaccharide (LPS) stimulation via nuclear factor-κB (NF-κB)-phosphodiesterase 4D (PDE4D)-cAMP signaling pathways. Clamping [Cl-]i at high levels or prolonged treatment with LPS augmented serum- and glucocorticoid-inducible protein kinase 1 (SGK1) phosphorylation and subsequently triggered NF-κB activation in airway epithelial cells, whereas inhibition of SGK1 abrogated airway inflammation in vitro and in vivo. Furthermore, Cl--SGK1 signaling pathway was pronouncedly activated in patients with bronchiectasis, a chronic airway inflammatory disease. Conversely, hydrogen sulfide (H2S), a sulfhydryl-containing gasotransmitter, confers anti-inflammatory effects through decreasing [Cl-]i via activation of cystic fibrosis transmembrane conductance regulator (CFTR). Our study confirms that intracellular Cl- is a crucial mediator of sustained airway inflammation. Medications that abrogate excessively increased intracellular Cl- may offer novel targets for the management of airway inflammatory diseases.


Assuntos
Bronquiectasia/imunologia , Cloretos/metabolismo , Inflamação/imunologia , Espaço Intracelular/metabolismo , Pseudomonas aeruginosa/imunologia , Mucosa Respiratória/imunologia , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Proteínas Imediatamente Precoces/metabolismo , Imunidade Inata , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
10.
Cell Physiol Biochem ; 42(6): 2377-2390, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957808

RESUMO

BACKGROUND/AIMS: Carbon monoxide (CO) is an important autocrine/paracrine messenger involved in a variety of physiological and pathological processes. This study aimed to investigate the regulatory role of CO released by CO-releasing molecule-2 (CORM-2) in a P2Y receptor-mediated calcium-signaling pathway in the human bronchial epithelial cell line, 16HBE14o-. METHODS: Intracellular calcium ([Ca2+]i) was measured by fura-2 microspectrofluorimetry. D-myo-inositol-1-phosphate (IP1) levels and cGMP-dependent protein kinase activity (PKG) were also quantified. RESULTS: The exogenous application of CORM-2 increased both intracellular Ca2+ and IP1, which are inhibited by U73122, a phospholipase C (PLC) inhibitor. In contrast, the P2Y2/P2Y4 receptor-mediated intracellular Ca2+ release and influx induced by UTP were inhibited in the presence of CORM-2. However, CORM-2 did not affect the store-operated Ca2+ entry (SOCE) induced by thapsigargin (Tg). Moreover, the inhibitory effect of CORM-2 on UTP-induced calcium increase could be attenuated by a soluble guanylyl cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), or a Protein Kinase G (PKG) inhibitor, KT5823, suggesting the involvement of sGC/PKG signaling in this process. CONCLUSION: CORM-2 serves a dual role in modulating [Ca2+]i in 16HBE14o- cells. Thus, CO released by CORM-2 may act as a regulator of calcium homeostasis in human airway epithelia. These findings help further elucidate the function of CO in many physiological and pathological conditions.


Assuntos
Cálcio/metabolismo , Monóxido de Carbono/toxicidade , Compostos de Boro/farmacologia , Brônquios/citologia , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estrenos/farmacologia , Fura-2/química , Guanilato Ciclase/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Compostos Organometálicos/metabolismo , Pirrolidinonas/farmacologia , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Tapsigargina/farmacologia , Regulação para Cima/efeitos dos fármacos , Uridina Trifosfato/farmacologia
11.
Chem Commun (Camb) ; 52(46): 7380-3, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27188496

RESUMO

A C2 symmetric small molecule composed of l-phenylalanine and isophthalamide was found to function as a Cl(-)/HCO3(-) dual transporter and self-assemble into chloride channels. In Ussing-chamber based short-circuit current measurements, this molecule elicited chloride-dependent short-circuit current (Isc) increase in both Calu-3 cell and CFBE41o-cell (with F508del mutant CFTR) monolayers.


Assuntos
Bicarbonatos/metabolismo , Canais de Cloreto/química , Cloretos/metabolismo , Transporte Biológico , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Espectroscopia de Ressonância Magnética , Mutação
12.
Cell Physiol Biochem ; 37(1): 306-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26316078

RESUMO

BACKGROUND/AIMS: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (I(SC)) in a human bronchial epithelial cell line (16HBE14o-), and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. METHODS: The I(SC) measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca(2+)]i) and cAMP were also quantified. RESULTS: Nobiletin stimulated a concentration-dependent increase in I(SC), which was due to Cl- secretion. The increase in I(SC) was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTR(inh)-172), but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS), Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated I(SC) was also sensitive to a protein kinase A (PKA) inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in I(SC) in a cystic fibrosis (CF) cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca(2+)]i. CONCLUSION: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.


Assuntos
Brônquios/efeitos dos fármacos , Cloretos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Flavonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Brônquios/metabolismo , Cálcio/metabolismo , Linhagem Celular , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Iminas/farmacologia , Transporte de Íons/efeitos dos fármacos , Isoquinolinas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Sulfonamidas/farmacologia
13.
PLoS One ; 9(9): e106235, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243587

RESUMO

P2Y receptors are expressed in virtually all epithelia and are responsible for the control of fluid and electrolyte transport. In asthmatic inflammation, the bronchial epithelia are damaged by eosinophil-derived, highly toxic cationic proteins, such as major basic protein (MBP). Consequently, extracellular nucleotides are released into the extracellular space from airway epithelial cells, and act in an autocrine or paracrine fashion to regulate immune functions. Our data show damage to the human bronchial epithelial cell line, 16HBE14o-, by poly-L-arginine-induced UDP release into the extracellular medium. Activation of P2Y6 receptor by its natural ligand, UDP, or its specific agonist, MRS 2693, led to the production of two proinflammatory cytokines, interleukin (IL)-6 and IL-8. This may have resulted from increased IL-6 and IL-8 mRNA expression, and activation of p38 and ERK1/2 MAPK, and NF-κB pathways. Our previous study demonstrated that UDP stimulated transepithelial Cl- secretion via both Ca2+- and cAMP-dependent pathways in 16HBE14o- epithelia. This was further confirmed in this study by simultaneous imaging of Ca2+ and cAMP levels in single cells using the Fura-2 fluorescence technique and a FRET-based approach, respectively. Moreover, the P2Y6 receptor-mediated production of IL-6 and IL-8 was found to be dependent on Ca2+, but not the cAMP/PKA pathway. Together, these studies show that nucleotides released during the airway inflammatory processes will activate P2Y6 receptors, which will lead to further release of inflammatory cytokines. The secretion of cytokines and the formation of such "cytokine networks" play an important role in sustaining the airway inflammatory disease.


Assuntos
Brônquios/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Receptores Purinérgicos P2/metabolismo , Mucosa Respiratória/metabolismo , Brônquios/citologia , Linhagem Celular , Células Epiteliais/citologia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fosforilação , Mucosa Respiratória/citologia
14.
Sheng Li Xue Bao ; 66(1): 16-22, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24553865

RESUMO

The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.


Assuntos
Epitélio/fisiologia , Transporte de Íons , Receptores Purinérgicos P2Y/fisiologia , Transporte Biológico , Membrana Celular/fisiologia , Canais de Cloreto/fisiologia , AMP Cíclico/fisiologia , Citocinas/imunologia , Células Epiteliais/fisiologia , Epitélio/imunologia , Humanos , Receptores Purinérgicos P2Y/imunologia , Transdução de Sinais
15.
PLoS One ; 8(10): e78181, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167607

RESUMO

Inositol polyphosphatases are important regulators since they control the catabolism of phosphoinositol derivatives, which are often signaling molecules for cellular processes. Here we report on the characterization of one of their members in soybean, GmSAL1. In contrast to the substrate specificity of its Arabidopsis homologues (AtSAL1 and AtSAL2), GmSAL1 only hydrolyzes inositol-1,4,5-trisphosphate (IP3) but not inositol-1,3,4-trisphosphate or inositol-1,4-bisphosphate.The ectopic expression of GmSAL1 in transgenic Arabidopsis thaliana led to a reduction in IP3 signals, which was inferred from the reduction in the cytoplasmic signals of the in vivo biomarker pleckstrin homology domain-green florescent protein fusion protein and the suppression of abscisic acid-induced stomatal closure. At the cellular level, the ectopic expression of GmSAL1 in transgenic BY-2 cells enhanced vacuolar Na(+) compartmentalization and therefore could partially alleviate salinity stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glycine max/enzimologia , Fosfatos de Inositol/metabolismo , Nucleotidases/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatos de Inositol/genética , Nucleotidases/genética , Monoéster Fosfórico Hidrolases , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Salinidade , Homologia de Sequência , Sódio/metabolismo , Glycine max/genética , Estresse Fisiológico/fisiologia
16.
Gen Comp Endocrinol ; 186: 85-93, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23500008

RESUMO

Although putative motilin receptor sequences have been reported in teleost, there is no proof for the existence of the motilin gene in teleost. In this study, we have identified a motilin-like gene in the genome of several fish species and cloned its cDNA sequence from zebrafish. The zebrafish motilin-like precursor shares very low amino acid (aa) identities with the previously reported motilin precursors. Processing of the zebrafish motilin-like precursor may generate a 17-aa C-terminal amidated mature peptide, the motilin-like peptide (motilin-LP). A putative zebrafish motilin receptor (MLNR) was also identified in zebrafish. In cultured eukaryotic cells transfected with the zebrafish MLNR, zebrafish motilin-LP could enhance both CRE-driven and SRE-driven promoter activities. Tissue distribution studies indicated that the zebrafish motilin-like gene is mainly expressed in the intestine and liver while the zebrafish MLNR gene is highly expressed in brain regions, suggesting that motilin-LP behaves like other gut hormones to regulate brain functions. These data suggest that the presence of a unique motilin/MNLR system in teleost.


Assuntos
Motilina/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Peixes/genética , Peixes/metabolismo , Motilina/genética , Peptídeos/genética , Peptídeos/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores de Neuropeptídeos/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
J Ethnopharmacol ; 138(1): 201-11, 2011 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-21939749

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The caterpillar fungus Cordyceps militaris (CM; Clavicipitaceae) is a well-known traditional Chinese medicine that can be artificially cultivated on a large scale. We have previously demonstrated that its stimulatory action on ion transport in human airway epithelia is similar to Cordyceps sinensis (Clavicipitaceae), which has been traditionally used to treat respiratory diseases. AIM OF THE STUDY: To investigate the signal transduction mechanism(s) underlying CM-induced ion transport activity in cultured human bronchial epithelia. MATERIALS AND METHODS: 16HBE14o-, a human bronchial epithelial cell line, was used to study the regulation of ion transport by the water extract of CM. CM extract was added to the apical or basolateral aspect of the epithelia. In subsequent experiments, different Cl(-) channel and K(+) channel blockers, adenylate cyclase and protein kinase A (PKA) inhibitors, and an intracellular Ca(2+) chelator were used to examine the involvement of apical Cl(-) and basolateral K(+) channels in mediating CM-induced Cl(-) secretion and the underlying signal transduction mechanism(s). PKA activity was also measured in 16HBE14o- cells. RESULTS: CM stimulated Cl(-) secretion across 16HBE14o- monolayers in a dose-dependent manner. Cl(-) secretion could be inhibited by apical application of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-)channel blocker and the calcium-activated Cl(-) channel (CaCC) blocker. Cl(-) secretion was sensitive to basolateral application of different K(+) channel blockers. Similar inhibitory patterns were obtained in nystatin-permeabilized epithelia. The CM-induced Cl(-) secretion could be inhibited by adenylate cyclase and PKA inhibitors as well as an intracellular Ca(2+) chelator. Data from the PKA assay suggested that CM extract caused a significant increase in PKA activity compared with untreated control epithelia. CONCLUSIONS: These results suggest that CM extract stimulated Cl(-) secretion across human bronchial epithelia, possibly via apical CFTR and CaCC, and the basolateral K(+) channels are involved in driving apical Cl(-) exit. The underlying signal transduction mechanisms involve both cAMP- and Ca(2+)-dependent pathways.


Assuntos
Brônquios/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cloreto/efeitos dos fármacos , Cloretos/metabolismo , Cordyceps , AMP Cíclico/metabolismo , Transporte de Íons/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Produtos Biológicos/farmacologia , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , Canais de Cloreto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Bloqueadores dos Canais de Potássio/farmacologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Front Physiol ; 2: 33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747769

RESUMO

Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 µM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

19.
PLoS One ; 6(7): e22363, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799837

RESUMO

BACKGROUND: Cysteinyl leukotriene (CysLT) is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT(1) receptor antagonists are available for clinical use for the treatment of asthma. Recently, crosstalk between CysLT(1) and P2Y(6) receptors has been delineated. P2Y receptors are expressed in apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Previous research suggests that CysLT(1) receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. However, the detailed molecular mechanism underlying the inhibition remains unresolved. METHODOLOGY/PRINCIPAL FINDINGS: In this study, western blot analysis confirmed that both CysLT(1) and P2Y(6) receptors were expressed in the human bronchial epithelial cell line 16HBE14o-. All three CysLT(1) antagonists inhibited the uridine diphosphate (UDP)-evoked I(SC), but only montelukast inhibited the UDP-evoked [Ca(2+)](i) increase. In the presence of forskolin or 8-bromoadenosine 3'5' cyclic monophosphate (8-Br-cAMP), the UDP-induced I(SC) was potentiated but was reduced by pranlukast and zafirlukast but not montelukast. Pranlukast inhibited the UDP-evoked I(SC) potentiated by an Epac activator, 8-(4-Chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2'-O-Me-cAMP), while montelukast and zafirlukast had no such effect. Pranlukast inhibited the real-time increase in cAMP changes activated by 8-CPT-2'-O-Me-cAMP as monitored by fluorescence resonance energy transfer imaging. Zafirlukast inhibited the UDP-induced I(SC) potentiated by N(6)-Phenyladenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-6-Phe-cAMP; a PKA activator) and UDP-activated PKA activity. CONCLUSIONS/SIGNIFICANCE: In summary, our data strongly suggest for the first time that in human airway epithelia, the three specific CysLT(1) receptor antagonists exert differential inhibitory effects on P2Y(6) receptor-coupled Ca(2+) signaling pathways and the potentiating effect on I(SC) mediated by cAMP and Epac, leading to the modulation of ion transport activities across the epithelia.


Assuntos
Brônquios/citologia , Antagonistas de Leucotrienos/farmacologia , Receptores de Leucotrienos/metabolismo , Receptores Purinérgicos P2/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetatos/farmacologia , Cálcio/metabolismo , Linhagem Celular , Cloretos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclopropanos , Condutividade Elétrica , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Quinolinas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Sulfetos , Difosfato de Uridina/farmacologia
20.
PLoS One ; 5(8): e12091, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20711426

RESUMO

BACKGROUND: The airway epithelium participates in asthmatic inflammation in many ways. Target cells of the epithelium can respond to a variety of inflammatory mediators and cytokines. Damage to the surface epithelium occurs following the secretion of eosinophil-derived, highly toxic cationic proteins. Moreover, the surface epithelium itself is responsible for the synthesis and release of cytokines that cause the selective recruitment, retention, and accumulation of various inflammatory cells. To mimic the damage seen during asthmatic inflammation, the bronchial epithelium can be challenged with highly charged cationic polypeptides such as poly-L-arginine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, human bronchial epithelial cells, 16HBE14o- cells, were "chemically injured" by exposing them to poly-l-arginine as a surrogate of the eosinophil cationic protein. Cytokine antibody array data showed that seven inflammatory mediators were elevated out of the 40 tested, including marked elevation in interleukin (IL)-6 and IL-8 secretion. IL-6 and IL-8 mRNA expression levels were elevated as measured with real-time PCR. Cell culture supernatants from apical and basolateral compartments were collected, and the IL-6 and IL-8 production was quantified with ELISA. IL-6 and IL-8 secretion by 16HBE14o- epithelia into the apical compartment was significantly higher than that from the basolateral compartment. Using specific inhibitors, the production of IL-6 and IL-8 was found to be dependent on p38 MAPK, ERK1/2 MAPK, and NF-kappaB pathways. CONCLUSIONS/SIGNIFICANCE: The results clearly demonstrate that damage to the bronchial epithelia by poly-L-arginine stimulates polarized IL-6 and IL-8 secretion. This apically directed secretion of cytokines may play an important role in orchestrating epithelial cell responses to inflammation.


Assuntos
Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Peptídeos/farmacologia , Linhagem Celular , Quimiocina CCL5/metabolismo , Cloretos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...