Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e14039, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915530

RESUMO

Several studies have identified mutations in neuroprotective genes in a few cases of Parkinson's disease (PD); however, the role of alternative splicing changes in PD remains unelucidated. Based on the transcriptome analysis of substantia nigra (SN) tissues obtained from PD cases and age-matched healthy controls, we identified a novel alternative splicing variant of DJ-1, lacking exon 6 (DJ-1 ΔE6), frequently detected in the SN of patients with PD. We found that the exon 6 skipping of DJ-1 induces mitochondrial dysfunction and impaired antioxidant capability. According to an in silico modeling study, the exon 6 skipping of DJ-1 disrupts the structural state suitable for the oxidation of the cysteine 106 residue that is a prerequisite for activating its neuroprotective roles. Our results suggest that change in DJ-1 alternative splicing may contribute to PD progression and provide an insight for studying PD etiology and its potential therapeutic targets.

2.
Exp Mol Med ; 54(10): 1756-1765, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36229591

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), a common aging-related process that predisposes individuals to various inflammatory responses, has been reported to be associated with COVID-19 severity. However, the immunological signature and the exact gene expression program by which the presence of CHIP exerts its clinical impact on COVID-19 remain to be elucidated. In this study, we generated a single-cell transcriptome landscape of severe COVID-19 according to the presence of CHIP using peripheral blood mononuclear cells. Patients with CHIP exhibited a potent IFN-γ response in exacerbating inflammation, particularly in classical monocytes, compared to patients without CHIP. To dissect the regulatory mechanism of CHIP (+)-specific IFN-γ response gene expression in severe COVID-19, we identified DNMT3A CHIP mutation-dependent differentially methylated regions (DMRs) and annotated their putative target genes based on long-range chromatin interactions. We revealed that CHIP mutant-driven hypo-DMRs at poised cis-regulatory elements appear to facilitate the CHIP (+)-specific IFN-γ-mediated inflammatory immune response. Our results highlight that the presence of CHIP may increase the susceptibility to hyperinflammation through the reorganization of chromatin architecture, establishing a novel subgroup of severe COVID-19 patients.


Assuntos
COVID-19 , Hematopoiese Clonal , Humanos , Transcriptoma , Hematopoese/genética , COVID-19/genética , Leucócitos Mononucleares , Mutação , Cromatina/genética , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...