Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(25): 29866-29875, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152743

RESUMO

Organic photodetectors (OPDs) are promising candidates for next-generation digital imaging and wearable sensors due to their low cost, tuneable optoelectrical properties combined with high-level performance, and solution-processed fabrication techniques. However, OPD detection is often limited to shorter wavelengths, whereas photodetection in the near-infrared (NIR) region is increasingly being required for wearable electronics and medical device applications. NIR sensing suffers from low responsivity and high dark currents. A common approach to enhance NIR photon detection is lowering the optical band gap via donor-acceptor (D-A) molecular engineering. Herein, we present the synthesis of two novel indacenodithiophene (IDT)-based D-A conjugated polymers, namely, PDPPy-IT and PSNT-IT via palladium-catalyzed Stille coupling reactions. These novel polymers exhibit optical band gaps of 1.81 and 1.27 eV for PDPPy-IT and PSNT-IT, respectively, with highly desirable visible and NIR light detection through energy-level manipulation. Moreover, excellent materials' solubility and thin-film processability allow easy incorporation of these polymers as an active layer into OPDs for light detection. In the case of PSNT-IT devices, a photodetection up to 1000 nm is demonstrated with a peak sensitivity centered at 875 nm, whereas PDPPy-IT devices are efficient in detecting the visible spectrum with the highest sensitivity at 660 nm. Overall, both OPDs exhibit spectral responsivities up to 0.11 A W-1 and dark currents in the nA cm-2 range. With linear dynamic ranges exceeding 140 dB and fast response times recorded below 100 µs, the use of novel IDT-based polymers in OPDs shows great potential for wearable optoelectronics.

2.
RSC Adv ; 8(64): 36563-36570, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35558964

RESUMO

As a thermoelectric (TE) material suited to applications for recycling waste-heat into electricity through the Seebeck effect, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) is of great interest. Our research demonstrates a comprehensive study of different post-treatment methods with nitric acid (HNO3) to enhance the thermoelectric properties of PEDOT:PSS. The optimum conditions are obtained when PEDOT:PSS is treated with HNO3 for 10 min at room temperature followed by passing nitrogen gas (N2) with a pressure of 0.2 MPa. Upon this treatment, PEDOT:PSS changes from semiconductor-like behaviour to metal-like behaviour, with a simultaneous enhancement in the electrical conductivity and Seebeck coefficient at elevated temperature, resulting in an increase in the thermoelectric power factor from 0.0818 to 94.3 µW m-1 K-2 at 150 °C. The improvement in the TE properties is ascribed to the combined effects of phase segregation and conformational change of the PEDOT due to the weakened coulombic attraction between PEDOT and PSS chains by nitric acid as well as the pressure of the N2 gas as a mechanical means.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...