Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255718

RESUMO

Organic compounds, such as amino acids, are essential for the origin of life, and they may have been delivered to the prebiotic Earth from extra-terrestrial sources, such as carbonaceous chondrites. In the parent bodies of carbonaceous chondrites, the radioactive decays of short-lived radionuclides, such as 26Al, cause the melting of ice, and aqueous alteration occurs in the early stages of solar system formation. Many experimental studies have shown that complex organic matter, including amino acids and high-molecular-weight organic compounds, is produced by such hydrothermal processes. On the other hand, radiation, particularly gamma rays from radionuclides, can contribute to the formation of amino acids from simple molecules such as formaldehyde and ammonia. In this study, we investigated the details of gamma-ray-induced amino acid formation, focusing on the effects of different starting materials on aqueous solutions of formaldehyde, ammonia, methanol, and glycolaldehyde with various compositions, as well as hexamethylenetetramine. Alanine and glycine were the most abundantly formed amino acids after acid hydrolysis of gamma-ray-irradiated products. Amino acid formation increased with increasing gamma-ray irradiation doses. Lower amounts of ammonia relative to formaldehyde produced more amino acids. Glycolaldehyde significantly increased amino acid yields. Our results indicated that glycolaldehyde formation from formaldehyde enhanced by gamma rays is key for the subsequent production of amino acids.

2.
Astrobiology ; 23(10): 1099-1117, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37768711

RESUMO

We present a comparative study of the methods used in the search for extraterrestrial microorganism life, including a summary table where different life-detection techniques can be easily compared as an aid to mission and instrument design aimed at life detection. This is an extension of previous study, where detection techniques for a series of target characteristics and molecules that could constitute a positive life detection were evaluated. This comparison has been extended with a particular consideration to sources of false positives, the causes of negative detection, the results of detection techniques when presented regarding terrestrial life, and additional science objectives that could be achieved outside the primary aim of detecting life. These additions address both the scientific and programmatic side of exploration mission design, where a successful proposal must demonstrate probable outcomes and be able to return valuable results even if no life is found. The applicability of the life detection techniques is considered for Earth life, Earth-independent life (life emerging independently from that on Earth,) and Earth-kin life (sharing a common ancestor with life on Earth), and techniques effective in detecting Earth life should also be useful in the detection of Earth-kin life. However, their applicability is not guaranteed for Earth-independent life. As found in our previous study, there exists no realistic single detection method that can conclusively determine the discovery of extraterrestrial life, and no method is superior to all others. In this study, we further consider combinations of detection techniques and identify imaging as a valuable addition to molecule detection methods, even in cases where there is insufficient resolution to observe the detailed morphology of a microbial cell. The search for extraterrestrial life is further divided into a survey-and-detection and analysis-and-conclusion step. These steps benefit from different detection techniques, but imaging is necessary for both parts.


Assuntos
Marte , Voo Espacial , Exobiologia/métodos , Meio Ambiente Extraterreno , Sistema Solar , Planeta Terra
3.
Nat Rev Chem ; 7(9): 598-599, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37596404
4.
Life (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37240748

RESUMO

Life most likely started during the Hadean Eon; however, the environmental conditions which contributed to the complexity of its chemistry are poorly known. A better understanding of various environmental conditions, including global (heliospheric) and local (atmospheric, surface, and oceanic), along with the internal dynamic conditions of the early Earth, are required to understand the onset of abiogenesis. Herein, we examine the contributions of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) associated with superflares from the young Sun to the formation of amino acids and carboxylic acids in weakly reduced gas mixtures representing the early Earth's atmosphere. We also compare the products with those introduced by lightning events and solar ultraviolet light (UV). In a series of laboratory experiments, we detected and characterized the formation of amino acids and carboxylic acids via proton irradiation of a mixture of carbon dioxide, methane, nitrogen, and water in various mixing ratios. These experiments show the detection of amino acids after acid hydrolysis when 0.5% (v/v) of initial methane was introduced to the gas mixture. In the set of experiments with spark discharges (simulation of lightning flashes) performed for the same gas mixture, we found that at least 15% methane was required to detect the formation of amino acids, and no amino acids were detected in experiments via UV irradiation, even when 50% methane was used. Carboxylic acids were formed in non-reducing gas mixtures (0% methane) by proton irradiation and spark discharges. Hence, we suggest that GCRs and SEP events from the young Sun represent the most effective energy sources for the prebiotic formation of biologically important organic compounds from weakly reducing atmospheres. Since the energy flux of space weather, which generated frequent SEPs from the young Sun in the first 600 million years after the birth of the solar system, was expected to be much greater than that of GCRs, we conclude that SEP-driven energetic protons are the most promising energy sources for the prebiotic production of bioorganic compounds in the atmosphere of the Hadean Earth.

5.
Life Sci Space Res (Amst) ; 34: 53-67, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35940690

RESUMO

The detection and analysis of extraterrestrial life are important issues of space science. Mars is among the most important planets to explore for extraterrestrial life, owing both to its physical properties and to its ancient and present environments as revealed by previous exploration missions. In this paper, we present a comparative study of methods for detecting extraterrestrial life and life-related substances. To this end, we have classified and summarized the characteristics targeted for the detection of extraterrestrial life in solar system exploration mission and the methods used to evaluate them. A summary table is presented. We conclude that at this moment (i) there is no realistic single detection method capable of concluding the discovery of extraterrestrial life, (ii) no single method has an advantage over the others in all respects, and (iii) there is no single method capable of distinguishing extraterrestrial life from terrestrial life. Therefore, a combination of complementary methods is essential. We emphasize the importance of endeavoring to detect extraterrestrial life without overlooking possible alien life forms, even at the cost of tolerating false positives. Summaries of both the targets and the detection methods should be updated continuously, and comparative studies of both should be pursued. Although this study assumes Mars to be a model site for the primary environment for life searches, both the targets and detection methods described herein will also be useful for searching for extraterrestrial life in any celestial environment and for the initial inspection of returned samples.


Assuntos
Marte , Voo Espacial , Exobiologia , Meio Ambiente Extraterreno , Planetas , Sistema Solar
6.
Anal Sci ; 38(1): 113-121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35287212

RESUMO

Pyrolysis gas chromatography-mass spectrometry is a useful technique for the analysis of complex organic matter. However, the pyrolysis temperatures must be carefully chosen to maximize the information obtained and, in parallel, minimize byproducts. One solution to accomplish this is the stepwise pyrolysis method, which has been employed to analyze complex mixtures of natural samples. Here, we compared the stepwise pyrolysis method to a suite of single-step pyrolysis runs using the same temperatures by employing a humic acid standard sample, to evaluate the advantage of the stepwise pyrolysis method. In addition, we conducted in-situ heating experiments of the humic acid under infrared microspectroscopy to observe changes in the functional groups during the stepwise pyrolysis process. Results showed that O-bearing components were released at relatively low temperatures, whereas aromatic components were released at higher temperatures, indicating that the stepwise method effectively separates labile and refractory fractions. As such, the stepwise method would be useful for analyzing limited amounts of samples, such as for extraterrestrial materials as well as for payload instruments onboard space missions.


Assuntos
Substâncias Húmicas , Pirólise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura Alta , Substâncias Húmicas/análise , Substâncias Macromoleculares
7.
ACS Cent Sci ; 8(12): 1664-1671, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36589881

RESUMO

Carbonaceous chondrites contain life's essential building blocks, including amino acids, and their delivery of organic compounds would have played a key role in life's emergence on Earth. Aqueous alteration of carbonaceous chondrites is a widespread process induced by the heat produced by radioactive decay of nuclides like 26Al. Simple ubiquitous molecules like formaldehyde and ammonia could produce various organic compounds, including amino acids and complex organic macromolecules. However, the effects of radiation on such organic chemistry are unknown. Hence, the effects of gamma rays from radioactive decays on the formation of amino acids in meteorite parent bodies are demonstrated here. We discovered that gamma-ray irradiation of aqueous formaldehyde and ammonia solutions afforded a variety of amino acids. The amino acid yields had a linear relationship with the total gamma-ray dose but were unaffected by the irradiation dose rates. Given the gamma-ray production rates in the meteorite parent bodies, we estimated that the production rates were reasonable compared to amino acid abundances in carbonaceous chondrites. Our findings indicate that gamma rays may contribute to amino acid formation in parent bodies during aqueous alteration. In this paper, we propose a new prebiotic amino acid formation pathway that contributes to life's origin.

8.
Astrobiology ; 21(12): 1479-1493, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793260

RESUMO

Amino acids have been detected in extraterrestrial bodies such as carbonaceous chondrites (CCs), which suggests that extraterrestrial organics could be the source of the first life on Earth, and interplanetary dust particles (IDPs) or micrometeorites (MMs) are promising carriers of extraterrestrial organic carbon. Some amino acids found in CCs are amino acid precursors, but these have not been well characterized. The Tanpopo mission was conducted in Earth orbit from 2015 to 2019, and the stability of glycine (Gly), hydantoin (Hyd), isovaline (Ival), 5-ethyl-5-methylhydantoin (EMHyd), and complex organics formed by proton irradiation from CO, NH3, and H2O (CAW) in space were analyzed by high-performance liquid chromatography and/or gas chromatography/mass spectrometry. The target substances showed a logarithmic decomposition over 1-3 years upon space exposure. Recoveries of Gly and CAW were higher than those of Hyd, Ival, and EMHyd. Ground simulation experiments showed different results: Hyd was more stable than Gly. Solar ultraviolet light was fatal to all organics, and they required protection when carried by IDPs/MMs. Thus, complex amino acid precursors (such as CAW) were possibly more robust than simple precursors during transportation to primitive Earth. The Tanpopo 2 mission is currently being conducted to expose organics to more probable space conditions.


Assuntos
Meteoroides , Voo Espacial , Aminoácidos/análise , Poeira Cósmica/análise , Planeta Terra , Meio Ambiente Extraterreno
9.
Astrobiology ; 21(12): 1451-1460, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449275

RESUMO

The Tanpopo experiment was the first Japanese astrobiology mission on board the Japanese Experiment Module Exposed Facility on the International Space Station (ISS). The experiments were designed to address two important astrobiological topics, panspermia and the chemical evolution process toward the generation of life. These experiments also tested low-density aerogel and monitored the microdebris environment around low Earth orbit. The following six subthemes were identified to address these goals: (1) Capture of microbes in space: Estimation of the upper limit of microbe density in low Earth orbit; (2) Exposure of microbes in space: Estimation of the survival time course of microbes in the space environment; (3) Capture of cosmic dust on the ISS and analysis of organics: Detection of the possible presence of organic compounds in cosmic dust; (4) Alteration of organic compounds in space environments: Evaluation of decomposition time courses of organic compounds in space; (5) Space verification of the Tanpopo hyper-low-density aerogel: Durability and particle-capturing capability of aerogel; (6) Monitoring of the number of space debris: Time-dependent change in space debris environment. Subthemes 1 and 2 address the panspermia hypothesis, whereas 3 and 4 address the chemical evolution. The last two subthemes contribute to space technology development. Some of the results have been published previously or are included in this issue. This article summarizes the current status of the Tanpopo experiments.


Assuntos
Exobiologia , Voo Espacial , Poeira Cósmica/análise , Planeta Terra , Meio Ambiente Extraterreno , Japão , Compostos Orgânicos/análise , Astronave
10.
Life (Basel) ; 11(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419105

RESUMO

The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and ß-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.

11.
Orig Life Evol Biosph ; 50(1-2): 15-33, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32314306

RESUMO

The early Solar System comprised a broad area of abiotically created organic compounds, including interstellar organics which were integrated into planetesimals and parent bodies of meteorites, and eventually delivered to the early Earth. In this study, we simulated interstellar complex organic compounds synthesized by proton irradiation of a gas mixture of CO, NH3, and H2O, which are known to release amino acids after acid hydrolysis on the basis of Kobayashi et al. (1999) who reported that at the first stage of chemical evolution, the main compounds formed abiotically are complex organic compounds with high molecular weights. We examined their possible hydrothermal alteration and stabilities as amino acid precursors under high temperature and pressure conditions simulating parent bodies of meteorites by using an autoclave. We reported that all samples treated at 200-300 °C predominantly released glycine and alanine, followed by α-aminobutyric acid, and serine. After heating, amino acid concentrations decreased in general; however, the recovery ratios of γ-aminobutyric acid increased with temperature. The interstellar complex organic analog could maintain as amino acid precursors after being treated at high temperature (200-300 °C) and pressure (8-14 MPa). However, the molecular structures were altered during heating to form organic compounds that are more stable and can survive in elevated hydrothermal conditions.


Assuntos
Aminoácidos/química , Fontes Hidrotermais , Substâncias Macromoleculares/química
12.
Sci Rep ; 9(1): 3169, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816187

RESUMO

The Zag meteorite which is a thermally-metamorphosed H ordinary chondrite contains a primitive xenolithic clast that was accreted to the parent asteroid after metamorphism. The cm-sized clast contains abundant large organic grains or aggregates up to 20 µm in phyllosilicate-rich matrix. Here we report organic and isotope analyses of a large (~10 µm) OM aggregate in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM aggregate has sp2 dominated hydrocarbon networks with a lower abundance of heteroatoms than in IOM from primitive (CI,CM,CR) carbonaceous chondrites, and thus it is distinguished from most of the OM in carbonaceous meteorites. The OM aggregate has high D/H and 15N/14N ratios (δD = 2,370 ± 74‰ and δ15N = 696 ± 100‰), suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus, the high D/H ratio must have been preserved during the extensive late-stage aqueous processing. It indicates that both the OM precursors and the water had high D/H ratios. Combined with 16O-poor nature of the clast, the OM aggregate and the clast are unique among known chondrite groups. We further propose that the clast possibly originated from D/P type asteroids or trans-Neptunian Objects.

13.
Life Sci Space Res (Amst) ; 20: 20-29, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30797431

RESUMO

Titan is the largest moon of Saturn and possesses a dense atmosphere composed of nitrogen and methane. Various types of organic compounds (hydrocarbons, nitriles, etc.) have been found on Titan, which were generated by reactions taking place in its atmosphere. These reactions are considered to provide crucial evidence for chemical reactions which may have occurred in the atmosphere of primitive Earth. Cassini discovered several lakes of liquid methane and ethane on Titan's surface; in addition, the presence of ammonia water in its sub-surface was implied. In order to simulate the chemical reactions in Titan's atmosphere, gas mixtures of nitrogen and methane have been exposed to plasma discharges to synthesize complex organic matters. In this study, we focused on the formation of nucleic acid bases and related compounds recovered from synthesized Titan tholins. The five nucleic acid bases that terrestrial life uses (adenine, cytosine, thymine, guanine, and uracil) have already been reported to be present in synthesized Titan tholins. Purines and pyrimidines, including the five aforementioned nucleic acid bases, were extracted from synthesized Titan tholins and analyzed by HPLC and LC/MS. As a result, the pyrimidine bases of isocytosine and 2, 4-diaminopyrimidine were detected together with the terrestrial nucleic acid bases of adenine, uracil, and cytosine. The results obtained in conjunction with those from previous studies show that some nucleic acid bases and related pyrimidine bases are found in synthesized Titan tholins, suggesting that chemical evolutions toward xenogenetic systems could occur in Titan's environment.


Assuntos
Atmosfera , Ácidos Nucleicos/análise , Ácidos Nucleicos/química , Compostos Orgânicos/análise , Purinas/análise , Pirimidinas/análise , Saturno , Meio Ambiente Extraterreno , Meteoroides
14.
Proc Natl Acad Sci U S A ; 116(3): 753-758, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602454

RESUMO

Organic matter in carbonaceous chondrites is distributed in fine-grained matrix. To understand pre- and postaccretion history of organic matter and its association with surrounding minerals, microscopic techniques are mandatory. Infrared (IR) spectroscopy is a useful technique, but the spatial resolution of IR is limited to a few micrometers, due to the diffraction limit. In this study, we applied the high spatial resolution IR imaging method to CM2 carbonaceous chondrites Murchison and Bells, which is based on an atomic force microscopy (AFM) with its tip detecting thermal expansion of a sample resulting from absorption of infrared radiation. We confirmed that this technique permits ∼30 nm spatial resolution organic analysis for the meteorite samples. The IR imaging results are consistent with the previously reported association of organic matter and phyllosilicates, but our results are at much higher spatial resolution. This observation of heterogeneous distributions of the functional groups of organic matter revealed its association with minerals at ∼30 nm spatial resolution in meteorite samples by IR spectroscopy.

15.
Astrobiology ; 17(8): 786-812, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28727932

RESUMO

To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.


Assuntos
Metano , Prebióticos , Atmosfera , Evolução Química , Meio Ambiente Extraterreno , Sistema Solar
16.
Sci Adv ; 3(3): e1602093, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345041

RESUMO

The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, ß-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies.


Assuntos
Acetaldeído/análogos & derivados , Aminoácidos , Amônia/química , Planeta Terra , Formaldeído/química , Meteoroides , Acetaldeído/química , Aminoácidos/síntese química , Aminoácidos/química
17.
Astrobiology ; 15(12): 1031-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26684503

RESUMO

Contents 1. Introduction 1.1. A workshop and this document 1.2. Framing origins of life science 1.2.1. What do we mean by the origins of life (OoL)? 1.2.2. Defining life 1.2.3. How should we characterize approaches to OoL science? 1.2.4. One path to life or many? 2. A Strategy for Origins of Life Research 2.1. Outcomes-key questions and investigations 2.1.1. Domain 1: Theory 2.1.2. Domain 2: Practice 2.1.3. Domain 3: Process 2.1.4. Domain 4: Future studies 2.2. EON Roadmap 2.3. Relationship to NASA Astrobiology Roadmap and Strategy documents and the European AstRoMap Appendix I Appendix II Supplementary Materials References.


Assuntos
Comunicação Interdisciplinar , Disciplinas das Ciências Naturais , Origem da Vida , Pesquisa , Consenso , Exobiologia , Vida , Redes e Vias Metabólicas , Modelos Teóricos , Fenômenos Físicos , Planetas , RNA
18.
Appl Radiat Isot ; 100: 55-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25498239

RESUMO

The aim of this work is to analyze the interactions of 5MeV electron beam radiation and a 290MeV/u Carbon beam with calcium carbonate (powder) at 298K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9MGy, and with Carbon beam from 1.5kGy to 8kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation.

19.
Orig Life Evol Biosph ; 44(1): 43-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25086872

RESUMO

We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.


Assuntos
DNA Bacteriano/análise , Deinococcus/isolamento & purificação , Meio Ambiente Extraterreno , Espectrometria de Fluorescência , Benzotiazóis , Deinococcus/genética , Diaminas , Géis , Compostos Orgânicos , Tamanho da Partícula , Quinolinas , Dióxido de Silício/análise
20.
Orig Life Evol Biosph ; 43(4-5): 411-28, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24132659

RESUMO

To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.


Assuntos
Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Meio Ambiente Extraterreno , Voo Espacial , Exobiologia , Íons Pesados/efeitos adversos , Especificidade da Espécie , Temperatura , Fatores de Tempo , Raios Ultravioleta/efeitos adversos , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...