Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 69(1): 135-40, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19150232

RESUMO

Solubilization of benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, n-pentylbenzene, and n-hexylbenzene into micelles of decanoyl-N-methylglucamide (Mega-10) was studied at 303.2, 308.2, 313.2, and 318.2K, where equilibrium concentrations of the above solubilizates were determined spectrophotometrically. The concentration of the above solubilizates remained constant below the critical micelle concentration (cmc) and increased linearly with an increase in Mega-10 concentration above the cmc at each temperature above. The Gibbs free energy change of the solubilizates from aqueous bulk to their liquid solubilizate phase was evaluated from dependence of their aqueous solubility on alkyl chain length of the solubilizates, which leads to the DeltaG(CH0)(2) values (-3.60 to -3.38 kJ mol(-1)), the energy change per CH2 group of the alkyl chain with no strong temperature dependence. The first stepwise solubilization constant (K1) was evaluated from the slope for the change of solubilizate concentration vs. Mega-10 concentration. The Gibbs free energy change (DeltaG(0,s)) for the solubilization decreased linearly with the carbon number of alkyl chain of the solubilizates, and the DeltaG(CH0)(2)(s) values (-2.71 to -2.54 kJ mol(-1)) obtained from the linearity showed a slight increase with temperature. The DeltaG(CH0)(2) values are less than the DeltaG(CH0)(2)(s) values, where the latter values clearly indicate that the location of alkyl chain is a hydrophobic micellar core. The fact is also supported by the absorption spectrum of the solubilized molecules. Temperature dependence of DeltaG(0,s) indicated that the solubilization is entropy-driven for the solubilizates with shorter alkyl chains, while it becomes enthalpy-driven for those with longer alkyl chains.


Assuntos
Derivados de Benzeno/química , Ácidos Graxos/química , Glucosamina/análogos & derivados , Temperatura , Carbono/química , Entropia , Glucosamina/química , Solubilidade , Soluções , Análise Espectral , Tensoativos/química , Termodinâmica
2.
Langmuir ; 24(1): 15-8, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18052401

RESUMO

Solubilization of benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, n-pentylbenzene, and n-hexylbenzene into micelles of decanoyl-N-methylglucamide (Mega-10) was studied, where equilibrium concentrations of the above solubilizates were determined spectrophotometrically at 303.2 K. The concentration of the above solubilizates remained constant below the critical micelle concentration (cmc) and increased linearly with an increase in Mega-10 concentration above the cmc. The Gibbs free energy change of the solubilizates from the aqueous bulk to the liquid solubilizate phase was evaluated from the dependence of their aqueous solubility on the alkyl chain length of the solubilizates, which leads to -3.46 kJ mol-1 for DeltaG(0)(CH), the energy change per CH2 group of the alkyl chain. The first stepwise solubilization constant (K(overline)1 ) was evaluated from the slope of the change of solubilizate concentration versus Mega-10 concentration. The Gibbs free energy change (DeltaG(0,s)) for the solubilization decreased linearly with the carbon number of the alkyl chain of the solubilizates, from which DeltaG(0,s)(CH2) as evaluated to be -2.71 kJ mol-1. The similar values above clearly indicate that the location of the alkyl chain is a hydrophobic micellar core, which is also supported by the absorption spectrum of the solubilized molecules.


Assuntos
Alcanos/química , Derivados de Benzeno/química , Ácidos Graxos/química , Glucosamina/análogos & derivados , Micelas , Tensoativos/química , Alquilação , Glucosamina/química , Solubilidade , Soluções/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...