Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(21): 5791-5794, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910760

RESUMO

Fluorescence microscopy images are inevitably tainted by background contributions including emission from out-of-focus planes, scattered light, and detector noise. In stimulated emission depletion (STED) nanoscopy, an additional, method-specific background arises from incomplete depletion and re-excitation by the depletion beam. Various approaches have been proposed to remove the background from a STED image, some of which rely on the acquisition of a separate background image that is subtracted from the STED image with a weighting factor. Using stimulated emission double depletion (STEDD) nanoscopy, we observed that the weighting factor varies locally in densely labeled samples, so that background removal with a single (global) weighting factor generates local image artifacts due to incorrect background subtraction. Here we present an algorithm that computes the optimal weighting factor at the single-pixel level, yielding a difference image with excellent suppression of low-frequency background.

2.
J Biol Phys ; 47(4): 371-386, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34698957

RESUMO

SAM-I riboswitches regulate gene expression through transcription termination upon binding a S-adenosyl-L-methionine (SAM) ligand. In previous work, we characterized the conformational energy landscape of the full-length Bacillus subtilis yitJ SAM-I riboswitch as a function of Mg2+ and SAM ligand concentrations. Here, we have extended this work with measurements on a structurally similar ligand, S-adenosyl-L-homocysteine (SAH), which has, however, a much lower binding affinity. Using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling (HMM) analysis, we identified major conformations and determined their fractional populations and dynamics. At high Mg2+ concentration, FRET analysis yielded four distinct conformations, which we assigned to two terminator and two antiterminator states. In the same solvent, but with SAM added at saturating concentrations, four states persisted, although their populations, lifetimes and interconversion dynamics changed. In the presence of SAH instead of SAM, HMM revealed again four well-populated states and, in addition, a weakly populated 'hub' state that appears to mediate conformational transitions between three of the other states. Our data show pronounced and specific effects of the SAM and SAH ligands on the RNA conformational energy landscape. Interestingly, both SAM and SAH shifted the fractional populations toward terminator folds, but only gradually, so the effect cannot explain the switching action. Instead, we propose that the noticeably accelerated dynamics of interconversion between terminator and antiterminator states upon SAM binding may be essential for control of transcription.


Assuntos
Riboswitch , Bacillus subtilis/genética , Ligantes , Conformação de Ácido Nucleico , S-Adenosilmetionina
3.
Mol Syst Biol ; 17(9): e10272, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569155

RESUMO

It is essential for cells to control which genes are transcribed into RNA. In eukaryotes, two major control points are recruitment of RNA polymerase II (Pol II) into a paused state, and subsequent pause release toward transcription. Pol II recruitment and pause release occur in association with macromolecular clusters, which were proposed to be formed by a liquid-liquid phase separation mechanism. How such a phase separation mechanism relates to the interaction of Pol II with DNA during recruitment and transcription, however, remains poorly understood. Here, we use live and super-resolution microscopy in zebrafish embryos to reveal Pol II clusters with a large variety of shapes, which can be explained by a theoretical model in which regulatory chromatin regions provide surfaces for liquid-phase condensation at concentrations that are too low for canonical liquid-liquid phase separation. Model simulations and chemical perturbation experiments indicate that recruited Pol II contributes to the formation of these surface-associated condensates, whereas elongating Pol II is excluded from these condensates and thereby drives their unfolding.


Assuntos
Cromatina , RNA Polimerase II , Animais , Cromatina/genética , RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Biomed Opt Express ; 12(2): 969-980, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680553

RESUMO

Fluorescence microscopy images are inevitably contaminated by background intensity contributions. Fluorescence from out-of-focus planes and scattered light are important sources of slowly varying, low spatial frequency background, whereas background varying from pixel to pixel (high frequency noise) is introduced by the detection system. Here we present a powerful, easy-to-use software, wavelet-based background and noise subtraction (WBNS), which effectively removes both of these components. To assess its performance, we apply WBNS to synthetic images and compare the results quantitatively with the ground truth and with images processed by other background removal algorithms. We further evaluate WBNS on real images taken with a light-sheet microscope and a super-resolution stimulated emission depletion microscope. For both cases, we compare the WBNS algorithm with hardware-based background removal techniques and present a quantitative assessment of the results. WBNS shows an excellent performance in all these applications and significantly enhances the visual appearance of fluorescence images. Moreover, it may serve as a pre-processing step for further quantitative analysis.

5.
Elife ; 92020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969791

RESUMO

The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.


In most animals, a protein called MondoA closely monitors the amount of glucose in the body, as this type of sugar is the fuel required for many life processes. Glucose levels also act as a proxy for the availability of other important nutrients. Once MondoA has detected glucose molecules, it turns genetic programmes on and off depending on the needs of the cell. So far, these mechanisms have mainly been studied in adult cells. However, recent studies have shown that proteins that monitor nutrient availability, and their associated pathways, can control early development. MondoA had not been studied in this context before, so Weger et al. decided to investigate its role in embryonic development. The experiments used embryos from zebrafish, a small freshwater fish whose early development is easily monitored and manipulated in the laboratory. Inhibiting production of the MondoA protein in zebrafish embryos prevented them from maturing any further, stopping their development at an early key stage. This block was caused by defects in microtubules, the tubular molecules that act like a microscopic skeleton to provide structural support for cells and guide transport of cell components. In addition, the pathway involved in the production of cholesterol and cholesterol-based hormones was far less active in embryos lacking MondoA. Treating MondoA-deficient embryos with one of these hormones corrected the microtubule defects and let the embryos progress to more advanced stages of development. These results reveal that, during development, the glucose sensor MondoA also controls pathways involved in the creation of cholesterol and associated hormones. These new insights into the metabolic regulation of development could help to understand certain human conditions; for example, certain patients with defective cholesterol pathway genes also show developmental perturbations. In addition, the work highlights a biological link between cholesterol production and cellular responses to glucose, which Weger et al. hope could one day help to identify new cholesterol-lowering drugs.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Colesterol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Peixe-Zebra , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Colesterol/genética , Embrião não Mamífero , Gastrulação/genética , Técnicas de Silenciamento de Genes , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
PLoS Genet ; 16(6): e1008774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555736

RESUMO

Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye. By analysing zebrafish pax6a/b compound mutants presenting anterior segment dysgenesis, we demonstrate that Pax6a/b guide the two NC populations to distinct proximodistal locations. We further provide evidence that the lens whose formation is pax6a/b-dependent and lens-derived TGFß signals contribute to the building of the anterior segment. Taken together, our results reveal multiple roles of Pax6a/b in the control of NC cells during development of the anterior segment.


Assuntos
Segmento Anterior do Olho/metabolismo , Crista Neural/metabolismo , Neurogênese , Fator de Transcrição PAX6/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Segmento Anterior do Olho/citologia , Segmento Anterior do Olho/embriologia , Movimento Celular , Mutação , Crista Neural/citologia , Crista Neural/embriologia , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
PLoS Comput Biol ; 14(4): e1006128, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29672531

RESUMO

State-of-the-art light-sheet and confocal microscopes allow recording of entire embryos in 3D and over time (3D+t) for many hours. Fluorescently labeled structures can be segmented and tracked automatically in these terabyte-scale 3D+t images, resulting in thousands of cell migration trajectories that provide detailed insights to large-scale tissue reorganization at the cellular level. Here we present EmbryoMiner, a new interactive open-source framework suitable for in-depth analyses and comparisons of entire embryos, including an extensive set of trajectory features. Starting at the whole-embryo level, the framework can be used to iteratively focus on a region of interest within the embryo, to investigate and test specific trajectory-based hypotheses and to extract quantitative features from the isolated trajectories. Thus, the new framework provides a valuable new way to quantitatively compare corresponding anatomical regions in different embryos that were manually selected based on biological prior knowledge. As a proof of concept, we analyzed 3D+t light-sheet microscopy images of zebrafish embryos, showcasing potential user applications that can be performed using the new framework.


Assuntos
Rastreamento de Células/estatística & dados numéricos , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Movimento Celular , Biologia Computacional , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Gastrulação , Camadas Germinativas/citologia , Imageamento Tridimensional , Microscopia de Fluorescência , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Software
8.
Chem Sci ; 9(4): 1006-1013, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29675147

RESUMO

We have established a simple one-step synthesis of single-enzyme nanogels (SENs), i.e., nanobiocatalysts consisting of an enzyme molecule embedded in a hydrophilic, polymeric crosslinked nanostructure, as a most attractive approach to enhance the stability of enzymes. In contrast to earlier protocols, we demonstrate here that the addition of a small amount of sucrose makes the nanogel formation equally effective as earlier two-step protocols requiring enzyme pre-modification. This provides the dual advantage of skipping a synthetic step and preserving the surface chemistry of the enzymes, hence their native structure. Enzymes encapsulated in this way exhibit a high catalytic activity, similar to that of the free enzymes, in a markedly widened pH range. With our method, the thickness of the hydrogel layer can be finely tuned by careful adjustment of reaction parameters. This is most important because the shell thickness strongly affects both enzyme activity and stability, as we observe for a wide selection of proteins. Finally, a single-molecule analysis by means of two-color confocal fluorescence coincidence analysis confirms that our encapsulation method is highly efficient and suppresses the occurrence of nanoparticles lacking an enzyme molecule. The proposed method is therefore highly attractive for biocatalysis applications, ensuring a high activity and stability of the enzymes.

9.
J Chem Phys ; 148(12): 123324, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604896

RESUMO

RNA (ribonucleic acid) molecules are highly flexible biopolymers fluctuating at physiological temperatures among many different conformations that are represented by minima in a hierarchical conformational free energy landscape. Here we have employed single-molecule FRET (smFRET) to explore the energy landscape of the B. subtilis yitJ SAM-I riboswitch (RS). In this small RNA molecule, specific binding of an S-adenosyl-L-methionine (SAM) ligand in the aptamer domain regulates gene expression by inducing structural changes in another domain, the expression platform, causing transcription termination by the RNA polymerase. We have measured smFRET histograms over wide ranges of Mg2+ concentration for three RS variants that were specifically labeled with fluorescent dyes on different sites. In the analysis, different conformations are associated with discrete Gaussian model distributions, which are typically fairly broad on the FRET efficiency scale and thus can be extremely challenging to unravel due to their mutual overlap. Our earlier work on two SAM-I RS variants revealed four major conformations. By introducing a global fitting procedure which models both the Mg2+ concentration dependencies of the fractional populations and the average FRET efficiencies of the individual FRET distributions according to Mg2+ binding isotherms, we were able to consistently describe the histogram data of both variants at all studied Mg2+ concentrations. With the third FRET-labeled variant, however, we found significant deviations when applying the four-state model to the data. This can arise because the different FRET labeling of the new variant allows two states to be distinguished that were previously not separable due to overlap. Indeed, the resulting five-state model presented here consistently describes the smFRET histograms of all three variants as well as their variations with Mg2+ concentration. We also performed a triangulation of the donor position for two of the constructs to explore how the expression platform is oriented with respect to the aptamer.


Assuntos
Modelos Biológicos , Riboswitch , S-Adenosilmetionina/química , Transferência Ressonante de Energia de Fluorescência/métodos , Magnésio/química
10.
Nat Chem Biol ; 13(11): 1172-1178, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920931

RESUMO

S-adenosyl-L-methionine (SAM) ligand binding induces major structural changes in SAM-I riboswitches, through which gene expression is regulated via transcription termination. Little is known about the conformations and motions governing the function of the full-length Bacillus subtilis yitJ SAM-I riboswitch. Therefore, we have explored its conformational energy landscape as a function of Mg2+ and SAM ligand concentrations using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling analysis. We resolved four conformational states both in the presence and the absence of SAM and determined their Mg2+-dependent fractional populations and conformational dynamics, including state lifetimes, interconversion rate coefficients and equilibration timescales. Riboswitches with terminator and antiterminator folds coexist, and SAM binding only gradually shifts the populations toward terminator states. We observed a pronounced acceleration of conformational transitions upon SAM binding, which may be crucial for off-switching during the brief decision window before expression of the downstream gene.


Assuntos
Bacillus subtilis/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação de Ácido Nucleico , RNA Bacteriano/química , Riboswitch , Bacillus subtilis/química , Ligantes , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , S-Adenosilmetionina/metabolismo
11.
Angew Chem Int Ed Engl ; 56(38): 11628-11633, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28661566

RESUMO

Green-to-red photoconvertible fluorescent proteins (pcFPs) are powerful tools for super-resolution localization microscopy and protein tagging. Recently, they have been found to undergo efficient photoconversion not only by the traditional 400-nm illumination but also by an alternative method termed primed conversion, employing dual wavelength illumination with blue and far-red/near-infrared light. Primed conversion has been reported only for Dendra2 and its mechanism has remained elusive. Here, we uncover the molecular mechanism of primed conversion by reporting the intermediate "primed" state to be a triplet dark state formed by intersystem crossing. We show that formation of this state can be influenced by the introduction of serine or threonine at sequence position 69 (Eos notation) and use this knowledge to create "pr"- (for primed convertible) variants of most known green-to-red pcFPs.


Assuntos
Cor , Proteínas Luminescentes/química , Engenharia de Proteínas , Microscopia de Fluorescência , Processos Fotoquímicos
12.
J Phys Chem B ; 120(4): 641-9, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26747376

RESUMO

We have studied the folding kinetics of the core intermediate (I) state of RNase H by using a combination of single-molecule FRET (smFRET) and hidden Markov model analysis. To measure fast dynamics in thermal equilibrium as a function of the concentration of the denaturant GdmCl, a special FRET labeled variant, RNase H 60-113, which is sensitive to folding of the protein core, was immobilized on PEGylated surfaces. Conformational transitions between the unfolded (U) state and the I state could be described by a two-state model within our experimental time resolution, with millisecond mean residence times. The I state population was always a minority species in the entire accessible range of denaturant concentrations. By introducing the measured free energy differences between the U and I states as constraints in global fits of the GdmCl dependence of FRET histograms of a differently labeled RNase H variant (RNase H 3-135), we were able to reveal the free energy differences and, thus, population ratios of all three macroscopic state ensembles, U, I and F (folded state) as a function of denaturant concentration.


Assuntos
Dobramento de Proteína , Ribonuclease H/química , Transferência Ressonante de Energia de Fluorescência
13.
J Phys Chem B ; 119(22): 6611-9, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25978145

RESUMO

Fluorescence resonance energy transfer (FRET) is a superb technique for measuring conformational changes of proteins on the single molecule level (smFRET) in real time. It requires introducing a donor and acceptor fluorophore pair at specific locations on the protein molecule of interest, which has often been a challenging task. By using two different self-labeling chemical tags, such as Halo-, TMP-, SNAP- and CLIP-tags, orthogonal labeling may be achieved rapidly and reliably. However, these comparatively large tags add extra distance and flexibility between the desired labeling location on the protein and the fluorophore position, which may affect the results. To systematically characterize chemical tags for smFRET measurement applications, we took the SNAP-tag/CLIP-tag combination as a model system and fused a flexible unstructured peptide, rigid polyproline peptides of various lengths, and the calcium sensor protein calmodulin between the tags. We could reliably identify length variations as small as four residues in the polyproline peptide. In the calmodulin system, the added length introduced by these tags was even beneficial for revealing subtle conformational changes upon variation of the buffer conditions. This approach opens up new possibilities for studying conformational dynamics, especially in large protein systems that are difficult to specifically conjugate with fluorophores.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Calmodulina/química , Peptídeos/química , Conformação Proteica
14.
J Biol Chem ; 290(28): 17056-72, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25903139

RESUMO

The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Fosfolipase C gama/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Galinhas , Humanos , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama/química , Fosfolipase C gama/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas rac de Ligação ao GTP/química , Proteínas rac de Ligação ao GTP/genética
15.
Chemistry ; 21(15): 5864-71, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25753253

RESUMO

The Diels-Alder reaction is one of the most important C-C bond-forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio- and diastereoselectivity. The Diels-Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple-turnover, stereoselectivity, and up to 1100-fold rate acceleration. Here, a new generation of anthracene-BODIPY-based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93-fold upon reaction with N-pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme-catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91% de and >99% ee. The stereochemistry of the major product was determined unambiguously by rotating-frame nuclear Overhauser NMR spectroscopy (ROESY-NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first.


Assuntos
Antracenos/metabolismo , Compostos de Boro/metabolismo , Corantes Fluorescentes/metabolismo , RNA Catalítico/metabolismo , Antracenos/síntese química , Antracenos/química , Compostos de Boro/síntese química , Compostos de Boro/química , Catálise , Reação de Cicloadição , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Modelos Moleculares , Sondas Moleculares/síntese química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estereoisomerismo , Especificidade por Substrato
16.
Sci Rep ; 5: 8601, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25712513

RESUMO

A new era in developmental biology has been ushered in by recent advances in the quantitative imaging of all-cell morphogenesis in living organisms. Here we have developed a light-sheet fluorescence microscopy-based framework with single-cell resolution for identification and characterization of subtle phenotypical changes of millimeter-sized organisms. Such a comparative study requires analyses of entire ensembles to be able to distinguish sample-to-sample variations from definitive phenotypical changes. We present a kinetic digital model of zebrafish embryos up to 16 h of development. The model is based on the precise overlay and averaging of data taken on multiple individuals and describes the cell density and its migration direction at every point in time. Quantitative metrics for multi-sample comparative studies have been introduced to analyze developmental variations within the ensemble. The digital model may serve as a canvas on which the behavior of cellular subpopulations can be studied. As an example, we have investigated cellular rearrangements during germ layer formation at the onset of gastrulation. A comparison of the one-eyed pinhead (oep) mutant with the digital model of the wild-type embryo reveals its abnormal development at the onset of gastrulation, many hours before changes are obvious to the eye.


Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário , Microscopia de Fluorescência/métodos , Peixe-Zebra , Animais , Contagem de Células , Mineração de Dados , Conjuntos de Dados como Assunto , Desenvolvimento Embrionário/genética , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/normas , Morfogênese , Mutação , Peixe-Zebra/genética
17.
PLoS One ; 9(2): e90036, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587204

RESUMO

Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.


Assuntos
Núcleo Celular , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia/métodos , Algoritmos , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes
18.
J Am Chem Soc ; 136(12): 4534-43, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24568646

RESUMO

We have developed a hidden Markov model and optimization procedure for photon-based single-molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels-Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and independently identified in two FRET constructs and at three Mg(2+) concentrations. Structures generally tend to become more compact upon addition of Mg(2+). Some compact structures are observed to significantly depend on Mg(2+) concentration, suggesting a tertiary fold stabilized by Mg(2+) ions. One compact structure was observed to be Mg(2+)-independent, consistent with stabilization by tertiary Watson-Crick base pairing found in the folded Diels-Alderase structure. A hierarchy of time scales was discovered, including dynamics of 10 ms or faster, likely due to tertiary structure fluctuations, and slow dynamics on the seconds time scale, presumably associated with significant changes in secondary structure. The folding pathways proceed through a series of intermediate secondary structures. There exist both compact pathways and more complex ones, which display tertiary unfolding, then secondary refolding, and, subsequently, again tertiary refolding.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Cadeias de Markov , Modelos Moleculares , Dobramento de RNA , RNA Catalítico/química , Sequência de Bases , Cinética , Conformação de Ácido Nucleico , RNA Catalítico/genética
19.
J Phys Chem B ; 117(42): 12800-6, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23621553

RESUMO

Enzymology at the single-molecule level by using fluorescence resonance energy transfer (smFRET) offers unprecedented insight into mechanistic aspects of catalytic reactions. Implementing spatiotemporal control of the reaction by using an external trigger is highly valuable in these challenging experiments. Here, we have incorporated a light-cleavable caging moiety into specific nucleotides of the Diels-Alderase (DAse) ribozyme. In this way, the folding energy landscape was significantly perturbed, and the catalytic activity was essentially suppressed. A careful smFRET efficiency histogram analysis at various Mg(2+) ion concentrations revealed an additional intermediate state that is not observed for the unmodified DAse ribozyme. We also observed that only a fraction of DAse molecules returns to the native state upon cleavage of the caged group by UV light. These constructs are attractive model RNA systems for further real-time single-molecule observation of the coupling between conformational changes and catalytic activity.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nucleotídeos/química , RNA Catalítico/química , Ânions/química , Biocatálise , Magnésio/química , Mutação , Conformação de Ácido Nucleico , Dobramento de RNA/efeitos da radiação , RNA Catalítico/genética , RNA Catalítico/metabolismo , Termodinâmica , Raios Ultravioleta
20.
Nucleic Acids Res ; 40(3): 1318-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21976731

RESUMO

Compared to protein enzymes, our knowledge about how RNA accelerates chemical reactions is rather limited. The crystal structures of a ribozyme that catalyzes Diels-Alder reactions suggest a rich tertiary architecture responsible for catalysis. In this study, we systematically probe the relevance of crystallographically observed ground-state interactions for catalytic function using atomic mutagenesis in combination with various analytical techniques. The largest energetic contribution apparently arises from the precise shape complementarity between transition state and catalytic pocket: A single point mutant that folds correctly into the tertiary structure but lacks one H-bond that normally stabilizes the pocket is completely inactive. In the rate-limiting chemical step, the dienophile is furthermore activated by two weak H-bonds that contribute ∼7-8 kJ/mol to transition state stabilization, as indicated by the 25-fold slower reaction rates of deletion mutants. These H-bonds are also responsible for the tight binding of the Diels-Alder product by the ribozyme that causes product inhibition. For high catalytic activity, the ribozyme requires a fine-tuned balance between rigidity and flexibility that is determined by the combined action of one inter-strand H-bond and one magnesium ion. A sharp 360° turn reminiscent of the T-loop motif observed in tRNA is found to be important for catalytic function.


Assuntos
RNA Catalítico/química , Biocatálise , Transferência Ressonante de Energia de Fluorescência , Ligação de Hidrogênio , Mutagênese , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...