Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37177329

RESUMO

The aim of this work was to optimize spot welding of unidirectional tapes made of polycarbonate and carbon fibers. Three studies were performed to investigate the influences of various welding conditions on the quality of the welded spot. First, we used a full factorial experimental design to analyze the influence of temperature and time on the welds' tensile stress at break. Second, we repeated the experiment with optimized settings and conditions. Finally, we adopted a central composite design (CCD) to investigate the stability of the process. Our results show that temperature had the greatest influence on weld quality. The maximum tensile stress achieved was 23 MPa. Using a relatively high temperature for a short welding time resulted in self-cleaning of the welding head and in a faster and more stable process, and gel permeation chromatography (GPC) confirmed that these conditions caused no additional degradation.

2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231909

RESUMO

The main aim of this work was to optimize the consolidation of unidirectional fiber-reinforced thermoplastic composite tapes made of polycarbonate and carbon fibers using a heating press and a cooling press in combination. Two comprehensive studies were carried out to investigate the impact of process settings and conditions on the quality of the consolidated parts. The initial screening study provided valuable insights that informed the design of the second study, in which the experimental design was expanded and various modifications, including the implementation of a frame tool, were introduced. The second study demonstrated that the modifications in combination with a high heating press temperature and elevated heating and cooling pressures successfully achieved the desired goals: the desired thickness (2 mm), improved bonding strength (23% increase), and reduced void content (down to 4.64%) in the consolidated parts.

3.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365774

RESUMO

In the processing of thermoplastic composites, great importance is attributed to the consolidation step, as it can significantly reduce the porosity of the semi-finished product and thus influence considerably the quality of the final component. This work presents an approach to modeling the thermodynamic behavior of composite materials during hot-press consolidation. For this purpose a multi-region, multi-phase and multi-component-mixture model was developed using the simulation toolbox OpenFOAM®. The sensitivity of the model was tested by varying the thermal parameters and mesh resolution, confirming its robustness. Validity of the model was confirmed by comparing simulation results to experimental data for (i) polycarbonate with 44% carbon fiber by volume and (ii) polypropylene with 45.3% glass fiber by volume. The simulation allows very precise estimation of when a particular temperature, such as the glass transition temperature or melting point, will be reached at the core of a composite. In relation to the total process time, maximum deviation of the simulation from the experimental data amounted to 2.84%. Therefore, the model is well suited for process optimization, it offers a basis for further model implementations and the creation of a digital twin.

4.
Polymers (Basel) ; 13(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641121

RESUMO

We present a novel measurement die for characterizing the flow behavior of gas-containing polymer melts. The die is mounted directly on the injection-molding cylinder in place of the mold cavity and thus enables near-process measurement of viscosity (i.e., under the conditions that would be present were a mold attached). This integration also resolves the issue of keeping gas-containing polymer melts under pressure during measurement to prevent desorption. After thermal characterization of the die, various correction approaches were compared against each other to identify the most suitable one for our case. We conducted measurements using polypropylene in combination with two different chemical blowing agents. Increasing the blowing-agent content to up to 6% revealed an interestingly low influence of gases on melt viscosity, which was confirmed by elongational viscosity measurements. For verification, we compared our results to corresponding measurements taken on a high-pressure capillary rheometer and found that they were in excellent agreement. Our die cannot only be used for rheological characterization. Combined with ultrasound sensors, it provides an innovative way of measuring the volumetric flow rate. This development represents an important step in improving the sustainability of gas-containing polymer processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...