Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(8): e0235551, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833964

RESUMO

VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ferro/metabolismo , Neoplasias/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/biossíntese , Colesterol/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Endossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Receptores de LDL/metabolismo , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
2.
J Biol Chem ; 294(35): 12911-12920, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31292192

RESUMO

Lignostilbene-α,ß-dioxygenase A (LsdA) from the bacterium Sphingomonas paucimobilis TMY1009 is a nonheme iron oxygenase that catalyzes the cleavage of lignostilbene, a compound arising in lignin transformation, to two vanillin molecules. To examine LsdA's substrate specificity, we heterologously produced the dimeric enzyme with the help of chaperones. When tested on several substituted stilbenes, LsdA exhibited the greatest specificity for lignostilbene (kcatapp = 1.00 ± 0.04 × 106 m-1 s-1). These experiments further indicated that the substrate's 4-hydroxy moiety is required for catalysis and that this moiety cannot be replaced with a methoxy group. Phenylazophenol inhibited the LsdA-catalyzed cleavage of lignostilbene in a reversible, mixed fashion (Kic = 6 ± 1 µm, Kiu = 24 ± 4 µm). An X-ray crystal structure of LsdA at 2.3 Å resolution revealed a seven-bladed ß-propeller fold with an iron cofactor coordinated by four histidines, in agreement with previous observations on related carotenoid cleavage oxygenases. We noted that residues at the dimer interface are also present in LsdB, another lignostilbene dioxygenase in S. paucimobilis TMY1009, rationalizing LsdA and LsdB homo- and heterodimerization in vivo A structure of an LsdA·phenylazophenol complex identified Phe59, Tyr101, and Lys134 as contacting the 4-hydroxyphenyl moiety of the inhibitor. Phe59 and Tyr101 substitutions with His and Phe, respectively, reduced LsdA activity (kcatapp) ∼15- and 10-fold. The K134M variant did not detectably cleave lignostilbene, indicating that Lys134 plays a key catalytic role. This study expands our mechanistic understanding of LsdA and related stilbene-cleaving dioxygenases.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Sphingomonas/enzimologia , Cristalografia por Raios X , Modelos Moleculares
3.
J Biol Chem ; 294(30): 11622-11636, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31197035

RESUMO

Staphylococcus aureus infection relies on iron acquisition from its host. S. aureus takes up iron through heme uptake by the iron-responsive surface determinant (Isd) system and by the production of iron-scavenging siderophores. Staphyloferrin B (SB) is a siderophore produced by the 9-gene sbn gene cluster for SB biosynthesis and efflux. Recently, the ninth gene product, SbnI, was determined to be a free l-serine kinase that produces O-phospho-l-serine (OPS), a substrate for SB biosynthesis. Previous studies have also characterized SbnI as a DNA-binding regulatory protein that senses heme to control sbn gene expression for SB synthesis. Here, we present crystal structures at 1.9-2.1 Å resolution of a SbnI homolog from Staphylococcus pseudintermedius (SpSbnI) in both apo form and in complex with ADP, a product of the kinase reaction; the latter confirmed the active-site location. The structures revealed that SpSbnI forms a dimer through C-terminal domain swapping and a dimer of dimers through intermolecular disulfide formation. Heme binding had only a modest effect on SbnI enzymatic activity, suggesting that its two functions are independent and structurally distinct. We identified a heme-binding site and observed catalytic heme transfer between a heme-degrading protein of the Isd system, IsdI, and SbnI. These findings support the notion that SbnI has a bifunctional role contributing precursor OPS to SB synthesis and directly sensing heme to control expression of the sbn locus. We propose that heme transfer from IsdI to SbnI enables S. aureus to control iron source preference according to the sources available in the environment.


Assuntos
Proteínas de Bactérias/fisiologia , Citratos/biossíntese , Heme/metabolismo , Staphylococcus aureus/metabolismo , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Catálise , Citratos/metabolismo , Genes Bacterianos , Ligação Proteica , Conformação Proteica , Staphylococcus aureus/genética
4.
J Biol Chem ; 292(44): 18290-18302, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28935670

RESUMO

Strain SYK-6 of the bacterium Sphingobium sp. catabolizes lignin-derived biphenyl via a meta-cleavage pathway. In this pathway, LigY is proposed to catalyze the hydrolysis of the meta-cleavage product (MCP) 4,11-dicarboxy-8-hydroxy-9-methoxy-2-hydroxy-6-oxo-6-phenyl-hexa-2,4-dienoate. Here, we validated this reaction by identifying 5-carboxyvanillate and 4-carboxy-2-hydroxypenta-2,4-dienoate as the products and determined the kcat and kcat/Km values as 9.3 ± 0.6 s-1 and 2.5 ± 0.2 × 107 m-1 s-1, respectively. Sequence analyses and a 1.9 Å resolution crystal structure established that LigY belongs to the amidohydrolase superfamily, unlike previously characterized MCP hydrolases, which are serine-dependent enzymes of the α/ß-hydrolase superfamily. The active-site architecture of LigY resembled that of α-amino-ß-carboxymuconic-ϵ-semialdehyde decarboxylase, a class III amidohydrolase, with a single zinc ion coordinated by His-6, His-8, His-179, and Glu-282. Interestingly, we found that LigY lacks the acidic residue proposed to activate water for hydrolysis in other class III amidohydrolases. Moreover, substitution of His-223, a conserved residue proposed to activate water in other amidohydrolases, reduced the kcat to a much lesser extent than what has been reported for other amidohydrolases, suggesting that His-223 has a different role in LigY. Substitution of Arg-72, Tyr-190, Arg-234, or Glu-282 reduced LigY activity over 100-fold. On the basis of these results, we propose a catalytic mechanism involving substrate tautomerization, substrate-assisted activation of water for hydrolysis, and formation of a gem-diol intermediate. This last step diverges from what occurs in serine-dependent MCP hydrolases. This study provides insight into C-C-hydrolyzing enzymes and expands the known range of reactions catalyzed by the amidohydrolase superfamily.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Modelos Moleculares , Sphingomonadaceae/enzimologia , Zinco/metabolismo , Amidoidrolases/química , Amidoidrolases/classificação , Amidoidrolases/genética , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/classificação , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Caproatos/metabolismo , Cristalografia por Raios X , Glutaratos/metabolismo , Hidrolases/química , Hidrolases/classificação , Hidrolases/genética , Hidrólise , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Parabenos/metabolismo , Ácidos Ftálicos/metabolismo , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Especificidade por Substrato , Ácido Vanílico/análogos & derivados , Ácido Vanílico/metabolismo
5.
ACS Chem Biol ; 12(7): 1778-1786, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28463500

RESUMO

Many pathogenic bacteria including Staphylococcus aureus use iron-chelating siderophores to acquire iron. Iron uptake oxidoreductase (IruO), a flavin adenine dinucleotide (FAD)-containing nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase from S. aureus, functions as a reductase for IsdG and IsdI, two paralogous heme degrading enzymes. Also, the gene encoding for IruO was shown to be required for growth of S. aureus on hydroxamate siderophores as a sole iron source. Here, we show that IruO binds the hydroxamate-type siderophores desferrioxamine B and ferrichrome A with low micromolar affinity and in the presence of NADPH, Fe(II) was released. Steady-state kinetics of Fe(II) release provides kcat/Km values in the range of 600 to 7000 M-1 s-1 for these siderophores supporting a role for IruO as a siderophore reductase in iron utilization. Crystal structures of IruO were solved in two distinct conformational states mediated by the formation of an intramolecular disulfide bond. A putative siderophore binding site was identified adjacent to the FAD cofactor. This site is partly occluded in the oxidized IruO structure consistent with this form being less active than reduced IruO. This reduction in activity could have a physiological role to limit iron release under oxidative stress conditions. Visible spectroscopy of anaerobically reduced IruO showed that the reaction proceeds by a single electron transfer mechanism through an FAD semiquinone intermediate. From the data, a model for single electron siderophore reduction by IruO using NADPH is described.


Assuntos
Benzoquinonas/química , Flavina-Adenina Dinucleotídeo/química , Ferro/metabolismo , Oxirredutases/metabolismo , Sideróforos/metabolismo , Anaerobiose , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cinética , Modelos Moleculares , NADP/química , Oxirredução , Oxirredutases/química
6.
Biochemistry ; 55(6): 927-39, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26794841

RESUMO

Staphylococcus aureus assembles the siderophore, staphyloferrin B, from l-2,3-diaminopropionic acid (l-Dap), α-ketoglutarate, and citrate. Recently, SbnA and SbnB were shown to produce l-Dap and α-ketoglutarate from O-phospho-l-serine (OPS) and l-glutamate. SbnA is a pyridoxal 5'-phosphate (PLP)-dependent enzyme with homology to O-acetyl-l-serine sulfhydrylases; however, SbnA utilizes OPS instead of O-acetyl-l-serine (OAS), and l-glutamate serves as a nitrogen donor instead of a sulfide. In this work, we examined how SbnA dictates substrate specificity for OPS and l-glutamate using a combination of X-ray crystallography, enzyme kinetics, and site-directed mutagenesis. Analysis of SbnA crystals incubated with OPS revealed the structure of the PLP-α-aminoacrylate intermediate. Formation of the intermediate induced closure of the active site pocket by narrowing the channel leading to the active site and forming a second substrate binding pocket that likely binds l-glutamate. Three active site residues were identified: Arg132, Tyr152, Ser185 that were essential for OPS recognition and turnover. The Y152F/S185G SbnA double mutant was completely inactive, and its crystal structure revealed that the mutations induced a closed form of the enzyme in the absence of the α-aminoacrylate intermediate. Lastly, l-cysteine was shown to be a competitive inhibitor of SbnA by forming a nonproductive external aldimine with the PLP cofactor. These results suggest a regulatory link between siderophore and l-cysteine biosynthesis, revealing a potential mechanism to reduce iron uptake under oxidative stress.


Assuntos
Citratos/biossíntese , Ornitina/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Catálise , Citratos/química , Cristalografia por Raios X , Dados de Sequência Molecular , Ornitina/biossíntese , Ornitina/química , Ornitina/genética , Estrutura Secundária de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Especificidade por Substrato/fisiologia
7.
J Biol Chem ; 289(49): 33797-807, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25336653

RESUMO

In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.


Assuntos
Proteínas de Bactérias/química , Citrato (si)-Sintase/química , Proteínas Reguladoras de Ferro/química , Ferro/metabolismo , Staphylococcus aureus/química , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrato (si)-Sintase/classificação , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Citratos/biossíntese , Ciclo do Ácido Cítrico/genética , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Proteínas Reguladoras de Ferro/classificação , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ácido Oxaloacético/metabolismo , Fosfoenolpiruvato/metabolismo , Filogenia , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Staphylococcus aureus/enzimologia
8.
Chem Biol ; 21(3): 379-88, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24485762

RESUMO

L-2,3-diaminopropionic acid (L-Dap) is an amino acid that is a precursor of antibiotics and staphyloferrin B a siderophore produced by Staphylococcus aureus. SbnA and SbnB are encoded by the staphyloferrin B biosynthetic gene cluster and are implicated in L-Dap biosynthesis. We demonstrate here that SbnA uses PLP and substrates O-phospho-L-serine and L-glutamate to produce a metabolite N-(1-amino-1-carboxyl-2-ethyl)-glutamic acid (ACEGA). SbnB is shown to use NAD(+) to oxidatively hydrolyze ACEGA to yield α-ketoglutarate and L-Dap. Also, we describe crystal structures of SbnB in complex with NADH and ACEGA as well as with NAD(+) and α-ketoglutarate to reveal the residues required for substrate binding, oxidation, and hydrolysis. SbnA and SbnB contribute to the iron sparing response of S. aureus that enables staphyloferrin B biosynthesis in the absence of an active tricarboxylic acid cycle.


Assuntos
Antibacterianos/química , Sideróforos/biossíntese , Staphylococcus aureus/metabolismo , beta-Alanina/análogos & derivados , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Citratos/biossíntese , Citratos/química , Cristalografia por Raios X , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Hidrólise , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Simulação de Dinâmica Molecular , NAD/química , NAD/metabolismo , Fosfosserina/análogos & derivados , Fosfosserina/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sideróforos/química , Staphylococcus aureus/enzimologia , beta-Alanina/biossíntese , beta-Alanina/química
9.
J Biol Chem ; 288(36): 25749-25759, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23893407

RESUMO

Staphylococcus aureus is a common hospital- and community-acquired bacterium that can cause devastating infections and is often multidrug-resistant. Iron acquisition is required by S. aureus during an infection, and iron acquisition pathways are potential targets for therapies. The gene NWMN2274 in S. aureus strain Newman is annotated as an oxidoreductase of the diverse pyridine nucleotide-disulfide oxidoreductase (PNDO) family. We show that NWMN2274 is an electron donor to IsdG and IsdI catalyzing the degradation of heme, and we have renamed this protein IruO. Recombinant IruO is a FAD-containing NADPH-dependent reductase. In the presence of NADPH and IruO, either IsdI or IsdG degraded bound heme 10-fold more rapidly than with the chemical reductant ascorbic acid. Varying IsdI-heme substrate and monitoring loss of the heme Soret band gave a K(m) of 15 ± 4 µM, a k(cat) of 5.2 ± 0.7 min(-1), and a k(cat)/K(m) of 5.8 × 10(3) M(-1) s(-1). From HPLC and electronic spectra, the major heme degradation products are 5-oxo-δ-bilirubin and 15-oxo-ß-bilirubin (staphylobilins), as observed with ascorbic acid. Although heme degradation by IsdI or IsdG can occur in the presence of H2O2, the addition of catalase and superoxide dismutase did not disrupt NADPH/IruO heme degradation reactions. The degree of electron coupling between IruO and IsdI or IsdG remains to be determined. Homologs of IruO were identified by sequence similarity in the genomes of Gram-positive bacteria that possess IsdG-family heme oxygenases. A phylogeny of these homologs identifies a distinct clade of pyridine nucleotide-disulfide oxidoreductases likely involved in iron uptake systems. IruO is the likely in vivo reductant required for heme degradation by S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Heme/metabolismo , Ferro/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Flavoproteínas/genética , Heme/genética , Peróxido de Hidrogênio/farmacologia , Oxigenases de Função Mista/genética , NADP/genética , NADP/metabolismo , Oxidantes/farmacologia , Oxigenases/genética , Staphylococcus aureus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...