Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(5): 2413-2422, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266235

RESUMO

Wildland fire is a major global driver in the exchange of aerosols between terrestrial environments and the atmosphere. This exchange is commonly quantified using emission factors or the mass of a pollutant emitted per mass of fuel burned. However, emission factors for microbes aerosolized by fire have yet to be determined. Using bacterial cell concentrations collected on unmanned aircraft systems over forest fires in Utah, USA, we determine bacterial emission factors (BEFs) for the first time. We estimate that 1.39 × 1010 and 7.68 × 1011 microbes are emitted for each Mg of biomass consumed in fires burning thinning residues and intact forests, respectively. These emissions exceed estimates of background bacterial emissions in other studies by 3-4 orders of magnitude. For the ∼2631 ha of similar forests in the Fishlake National Forest that burn each year on average, an estimated 1.35 × 1017 cells or 8.1 kg of bacterial biomass were emitted. BEFs were then used to parametrize a computationally scalable particle transport model that predicted over 99% of the emitted cells were transported beyond the 17.25 x 17.25 km model domain. BEFs can be used to expand understanding of global wildfire microbial emissions and their potential consequences to ecosystems, the atmosphere, and humans.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Ecossistema , Florestas , Bactérias
2.
ISME Commun ; 2(1): 8, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37938277

RESUMO

The atmosphere contains a diverse reservoir of microbes but the sources and factors contributing to microbial aerosol variability are not well constrained. To advance understanding of microbial emissions in wildfire smoke, we used unmanned aircraft systems to analyze the aerosols above high-intensity forest fires in the western United States. Our results show that samples of the smoke contained ~four-fold higher concentrations of cells (1.02 ± 0.26 × 105 m-3) compared to background air, with 78% of microbes in smoke inferred to be viable. Fivefold higher taxon richness and ~threefold enrichment of ice nucleating particle concentrations in smoke implies that wildfires are an important source of diverse bacteria and fungi as well as meteorologically relevant aerosols. We estimate that such fires emit 3.71 × 1014 microbial cells ha-1 under typical wildfire conditions in western US forests and demonstrate that wildland biomass combustion has a large-scale influence on the local atmospheric microbial assemblages. Given the long-range transport of wildfire smoke emissions, these results expand the concept of a wildfire's perimeter of biological impact and have implications to biogeography, gene flow, the dispersal of plant, animal, and human pathogens, and meteorology.

3.
PNAS Nexus ; 1(3): pgac115, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741468

RESUMO

Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.

4.
Ecol Appl ; 31(8): e02433, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339088

RESUMO

We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Florestas , América do Norte
5.
Infect Drug Resist ; 14: 5711-5723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002262

RESUMO

Climate change is increasingly recognized for its impacts on human health, including how biotic and abiotic factors are driving shifts in infectious disease. Changes in ecological conditions and processes due to temperature and precipitation fluctuations and intensified disturbance regimes are affecting infectious pathogen transmission, habitat, hosts, and the characteristics of pathogens themselves. Understanding the relationships between climate change and infectious diseases can help clinicians broaden the scope of differential diagnoses when interviewing, diagnosing, and treating patients presenting with infections lacking obvious agents or transmission pathways. Here, we highlight key examples of how the mechanisms of climate change affect infectious diseases associated with water, fire, land, insects, and human transmission pathways in the hope of expanding the analytical framework for infectious disease diagnoses. Increased awareness of these relationships can help prepare both clinical physicians and epidemiologists for continued impacts of climate change on infectious disease in the future.

6.
ISME J ; 15(2): 461-472, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009511

RESUMO

The environmental sources of microbial aerosols and processes by which they are emitted into the atmosphere are not well characterized. In this study we analyzed microbial cells and biological ice nucleating particles (INPs) in smoke emitted from eight prescribed wildland fires in North Florida. When compared to air sampled prior to ignition, samples of the air-smoke mixtures contained fivefold higher concentrations of microbial cells (6.7 ± 1.3 × 104 cells m-3) and biological INPs (2.4 ± 0.91 × 103 INPs m-3 active at temperatures ≥ -15 °C), and these data significantly positively correlated with PM10. Various bacteria could be cultured from the smoke samples, and the nearest neighbors of many of the isolates are plant epi- and endophytes, suggesting vegetation was a source. Controlled laboratory combustion experiments indicated that smoke emitted from dead vegetation contained significantly higher numbers of cells, INPs, and culturable bacteria relative to the green shrubs tested. Microbial viability of smoke aerosols based on formazan production and epifluorescent microscopy revealed no significant difference in the viable fraction (~80%) when compared to samples of ambient air. From these data, we estimate each fire aerosolized an average of 7 ± 4 × 109 cells and 2 ± 1 × 108 biological INPs per m2 burned and conclude that emissions from wildland fire are sources of viable microbial aerosols to the atmosphere.


Assuntos
Poluentes Atmosféricos , Incêndios , Incêndios Florestais , Aerossóis , Atmosfera , Florida , Gelo/análise
8.
Sci Data ; 7(1): 194, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572035

RESUMO

Wildland fires have a multitude of ecological effects in forests, woodlands, and savannas across the globe. A major focus of past research has been on tree mortality from fire, as trees provide a vast range of biological services. We assembled a database of individual-tree records from prescribed fires and wildfires in the United States. The Fire and Tree Mortality (FTM) database includes records from 164,293 individual trees with records of fire injury (crown scorch, bole char, etc.), tree diameter, and either mortality or top-kill up to ten years post-fire. Data span 142 species and 62 genera, from 409 fires occurring from 1981-2016. Additional variables such as insect attack are included when available. The FTM database can be used to evaluate individual fire-caused mortality models for pre-fire planning and post-fire decision support, to develop improved models, and to explore general patterns of individual fire-induced tree death. The database can also be used to identify knowledge gaps that could be addressed in future research.


Assuntos
Incêndios , Agricultura Florestal , Florestas , Árvores , Bases de Dados como Assunto , Estados Unidos
9.
PLoS One ; 10(5): e0126755, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26016779

RESUMO

Butterflies such as the atala hairstreak, Eumaeus atala Poey, and the frosted elfin, Callophrys irus Godart, are restricted to frequently disturbed habitats where their larval host plants occur. Pupae of these butterflies are noted to reside at the base of host plants or in the leaf litter and soil, which may allow them to escape direct mortality by fire, a prominent disturbance in many areas they inhabit. The capacity of these species to cope with fire is a critical consideration for land management and conservation strategies in the locations where they are found. Survival of E. atala pupae in relation to temperature and duration of heat pulse was tested using controlled water bath experiments and a series of prescribed fire field experiments. Survival of E. atala pupae was correlated to peak temperature and heat exposure in both laboratory and field trials. In addition, E. atala survival following field trials was correlated to depth of burial; complete mortality was observed for pupae at the soil surface. Fifty percent of E. atala survived the heat generated by prescribed fire when experimentally placed at depths ≥ 1.75 cm, suggesting that pupation of butterflies in the soil at depth can protect from fatal temperatures caused by fire. For a species such as E. atala that pupates above ground, a population reduction from a burn event is a significant loss, and so decreasing the impact of prescribed fire on populations is critical.


Assuntos
Comportamento Animal/fisiologia , Borboletas/fisiologia , Incêndios , Animais , Ecossistema , Florida , Florestas , Temperatura Alta , Folhas de Planta , Pupa/fisiologia , Solo , Análise de Sobrevida
10.
Ecol Appl ; 21(1): 61-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21516888

RESUMO

In order to develop management strategies that maintain native biodiversity in plant communities adapted to high-severity fire, an understanding of natural postfire succession in the target ecosystem is essential. Detailed information on fire effects is lacking for the sand pine (Pinus clausa [Chapm. ex Engelm.] Vasey ex Sarg.) scrub of the southeastern United States, limiting our ability to decide how and when to apply prescribed fire in this ecosystem. We studied the effects of fire-severity heterogeneity on sand pine scrub following a 4700-ha wildfire in Florida's Juniper Prairie Wilderness Area (USA). We identified four levels of fire severity (unburned, low, moderate, and high) and three pre-burn stand conditions (sapling, mature, and senescent). Study plots were established in each severity-stand-class combination, and were sampled at one and two years following fire. Nonmetric multidimensional scaling (NMS) ordination was applied in order to identify differences in community composition and successional trajectories in each of the stand-class-fire-severity combinations. NMS analyses indicated a shift in dominance between the dominant understory oak species, from Quercus myrtifolia Willd. to Quercus geminata Small, as sand pine basal area increases. Our ordination and regression results showed that Q. myrtifolia was the most aggressive colonizer of postfire open space, which is an important structural and habitat component of a sand pine scrub. Successional trajectories were heavily influenced by Quercus myrtifolia Willd. and were more uniform in the mature class than in the senescent class, probably due to more consistent overstory basal area. In both mature and sapling stands, herbaceous species cover was highest in moderate-severity plots. Woody-debris load varied significantly with stand age, fire severity level, and time. Sand pine seedling recruitment was highest in mature stands burned at high severity, while sapling and senescent stands exhibited much lower sand pine seedling recruitment rates at all levels of fire severity. The observed differences in seedling recruitment are expected to influence the progressive development of vertical structure and composition in the sand pine forest, leading to community differences that will persist and influence the effects of subsequent disturbances.


Assuntos
Incêndios , Plantas/classificação , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...