Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(4): 1766-1778, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38170852

RESUMO

This study aims to compare the effect of substituents (position and number) and reduced graphene oxide on the supercapacitive properties of cobalt(II) phthalocyanines. For this purpose, three new tetra- and octa-substituted cobalt(II) phthalocyanines bearing 9H-carbazol-2-yloxy groups on peripheral or non-peripheral positions (1-3) were synthesized. The characterization of the resultant cobalt(II) phthalocyanines was carried out by applying several spectroscopic approaches. The newly synthesized macromolecules were used for the functionalization of reduced graphene oxide (rGO). The obtained nanocomposites (rGO-(1-3)) were utilized for the modification of Ni foam (NiF) electrodes through a facile one-step electrodeposition strategy performed for electrochemical supercapacitor applications. Simultaneous polymerization of the cobalt phthalocyanines and electrochemically reduction of graphene oxide led to the formation of a fabricating layer on the surface of the NiF electrode. The resulting electropolymerized films were characterized by Raman, Fourier-transform infrared (FT-IR), and Field emission scanning electron microscope (FESEM) spectroscopic techniques as well as electrochemical methods. The prepared electrodes possessed superior electrochemical activities owing to the synergistic effect of the cobalt(II) phthalocyanines and rGO. All the modified electrodes displayed high supercapacitaive properties and the highest activity was obtained for the NiF/rGO2-1 electrode. The NiF/rGO2-1 electrode exhibited higher specific capacitance (655.2 F g-1 at 0.5 A g-1) than NiF/1 (338.0 F g-1). Additionally, a specific capacitance of 85.2% was obtained for NiF/rGO2-1 electrode after 3000 charge-discharge cycles. As a result, all the prepared metallophthalocyanines-reduced graphene oxide can be considered alternative agents to develop high performance-next-generation energy storage devices.

2.
Nanotechnology ; 35(2)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37804825

RESUMO

The synthesis of two-dimensional (2D) graphiticg-C3N4and heteroatom-doped graphitic H@g-C3N4(H: B, P, or S) particles were successfully done using melamine as source compounds and boric acid, phosphorous red, and sulfur as doping agents. The band gap values of 2Dg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures were determined as 2.90, 3.03, 2.89, and 2.93 eV, respectively. The fluorescent emission wavelengths of 2Dg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures were observed at 442, 430, 441, and 442 nm, respectively upon excitation atλEx= 325 nm. There is also one additional new emission wavelength was found at 345 nm for B50@g-C3N4structure. The blood compatibility test results ofg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures revealed that all materials are blood compatible with <2% hemolysis and >90% blood clotting indices at 100µg ml-1concentration. The cell toxicity of the prepared 2D graphitic structures were also tested on L929 fibroblast cells, and even the heteroatom doped hasg-C3N4structures induce no cytotoxicity was observed with >91% cell viability even at 250µg ml-1particle concentration with the exception of P50@g-C3N4which as >75 viability. Moreover, for 2Dg-C3N4, B50@g-C3N4, and S50@g-C3N4constructs, even at 500µg ml-1concentration, >90% cell viabilities was monitored. As a diagnostic material, B50@g-C3N4was found to have significantly high penetration and distribution abilities into L929 fibroblast cells granting a great potential in fluorescence imaging and bioimaging applications. Furthermore, the elemental doping with B, P, and S ofg-C3N4were found to significantly increase the photodynamic antibacterial activity e.g. more than half of bacterial elimination by heteroatom-doped forms ofg-C3N4under UVA treatment was achieved.


Assuntos
Antibacterianos , Antioxidantes , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nitrilas/farmacologia , Nitrilas/química
3.
Int J Biol Macromol ; 231: 123297, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646353

RESUMO

Recently, the design of stimuli-responsive hydrogels for controlled drug delivery systems has been extensively investigated to meet therapeutic needs and optimize the release pattern of the drug. Being a natural polyelectrolyte, hyaluronic acid (HA) is excellent potential to generate new opportunities for electro-responsive drug carrier applications. In the current study, HA-based electroconductive hydrogel was developed as a novel smart drug carrier for anti-inflammatory drug release by the combination of in-situ and post polymerization mechanisms. HA was modified through methacrylation reaction to introduce photocrosslinkable groups into its structure and then reduced graphene oxide (rGO) was encapsulated into methacrylated HA (HA/MA) hydrogel by using the photopolymerization technique. In the post polymerization process, polyaniline (PANI) was incorporated/loaded into HA/MA-rGO polymeric network produced in previous step. The produced HA/MA-rGO-PANI hydrogel exhibited sufficient electrical conductivity providing the desirable electro-responsive ability for Ibuprofen (IBU) release. Furthermore, it has superior mechanical performance compared to pure (HA/MA) and rGO containing (HA/MA-rGO) hydrogels. IBU release from the hydrogel was successfully triggered by electrical stimulation and the cumulative drug release also enhanced by increasing of the applied voltage. These results highlighted that the novel HA/MA-rGO-PANI hydrogel could be a promising candidate for electrical-stimulated anti-inflammatory release systems in neural implant applications.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Liberação Controlada de Fármacos , Portadores de Fármacos , Condutividade Elétrica
4.
Dalton Trans ; 48(25): 9194-9204, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31157354

RESUMO

Unsymmetrically substituted phthalocyanines were synthesized by the well-known statistical condensation method using two differently substituted precursors, 4-tert-butylphthalonitrile and 4-(4-pyrrol-1-yl)phenoxyphthalonitrile. Spin-coated thin films of these compounds were subsequently exposed to varying concentrations of methanol, ethanol and butanol between 25 and 150 ppm in order to investigate the effects of the number of carbon atoms in the alcohol vapors. The results of this preliminary investigation indicated that sensor performance parameters such as sensitivity, response and recovery time strongly depend on the number of carbon atoms in the analyte molecules. It was found that the sensitivity of the sensors decreases with increasing number of carbon atoms. Electrochemistry studies of CoPc and MnClPc were carried out with cyclic and square wave voltammetry methods. Both complexes illustrated metal and ring-based electron transfer reactions. While CoPc underwent only one metal-based reduction ([CoIIPc2-]/[CoIPc2-]1-), two metal-based reductions ([Cl-MnIIIPc2-]/[Cl-MnIIPc2-]1- and [Cl-MnIIPc2-]1-/[Cl-MnIPc2-]2-) were observed with MnPc. Color changes during the in situ spectroelectrochemical measurements illustrated the versatility of the compounds for display technologies. Pyrrole-containing substituents of the complexes triggered their electropolymerization on the working electrode, which enhances their value as functional materials for modified electrodes.

5.
Biosens Bioelectron ; 128: 144-150, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660929

RESUMO

In this work, 4,4-difluoro-8-(4-hydroxyphenyl)- 2,6-diethynly-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY) having double terminal ethynyl groups was synthesized. Three dimensional single walled carbon nanotube (SWCNT)-BODIPY hybrid material (3D SWCNT-BODIPY) was synthesized by the reaction of BODIPY bearing double terminal ethynyl groups with azido containing SWCNTs via "Click" reaction. The structural properties and electrochemical detection of eserine (a pesticide) on BODIPY functionalized SWCNTs as a three dimensional (3D) material were investigated. A glassy carbon electrode (GCE) was modified by 3D SWCNT-BODIPY hybrid material for the determination of eserine in the range of 0.25-2.25 µM. In the study by the square wave voltammetry (SWV), the bare GCE showed no response, while the new peak at - 0.6 V appeared in the case of the modified electrode. The detection limit and quantification were determined as 160 nM and 528 nM for eserine on the 3D SWCNT-BODIPY modified electrode, respectively. Eserine was also determined with a standard addition method in different brands of orange juices, and the recovery of eserine was obtained to be in the range of 102.09% and 103.22%. This study clearly indicates that the 3D SWCNT-BODIPY modified electrode tested as an electrochemical sensor was found to be highly selective and sensitive to eserine.


Assuntos
Técnicas Biossensoriais , Compostos de Boro/química , Técnicas Eletroquímicas , Fisostigmina/isolamento & purificação , Química Click , Eletrodos , Limite de Detecção , Nanotubos de Carbono/química , Fisostigmina/química
6.
Biosens Bioelectron ; 87: 81-88, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27522481

RESUMO

1,3-Bis(2-pyridylimino)isoindoline derivative bearing 3,4-ethylenedioxythiophene (EDOT-BPI) and its palladium complex (EDOT-PdBPI) were synthesized and characterized by FT-IR, 1H NMR, 13C NMR, UV-Vis spectroscopies and via mass spectrometric analysis. Polymerization of EDOT-PdBPI and copolymerization with 4-amino-N-(2,5-di(thiophene-2-yl)-1H-pyrrol-1-yl)benzamide (HKCN) were carried out by an electrochemical method. In addition, P(EDOT-PdBPI-co-HKCN) modified graphite rod electrode was improved for amperometric glucose sensor based on glucose oxidase (GOx). In this novel biosensor matrix, amino groups in HKCN were used for the enzyme immobilization. On the other hand, EDOT-PdBPI used to mediate the bioelectrocatalytic reaction. Amperometric detection was carried out following oxygen consumption at -0.7V vs. the Ag reference electrode in phosphate buffer (50mM, pH 6.0). The novel biosensor showed a linear amperometric response for glucose within a concentration range of 0.25mM to 2.5mM (LOD: 0.176mM). Amperometric signals at 1mM of glucose were 17.9µA under anaerobic conditions. Amperometric response of the P(EDOT-PdBPI-co-HKCN)/GOx electrode decreased only by 13% within eight weeks. The P(EDOT-PdBPI-co-HKCN)/GOx electrode showed good selectivity in the presence of ethanol and phenol. This result shows that, modification of the proposed biosensor by copolymerization of amine functionalized monomer, which is indispensable to the enzyme immobilization, with palladium complex bearing monomer, which is mediate the bioelectrocatalytic reaction, have provided to give perfect response to different glucose concentrations.


Assuntos
Técnicas Biossensoriais/métodos , Complexos de Coordenação/química , Glucose/análise , Paládio/química , Polimerização , Tiofenos/química , Aspergillus/enzimologia , Bebidas Gaseificadas/análise , Complexos de Coordenação/síntese química , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Enzimas Imobilizadas/química , Sucos de Frutas e Vegetais/análise , Glucose Oxidase/química , Modelos Moleculares , Tiofenos/síntese química
7.
Dalton Trans ; 45(7): 3086-92, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26766137

RESUMO

Zinc(ii) phthalocyanine (TEMPO-ZnPc), peripherally functionalized with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals is synthesized and its magneto structural and electrochemical behaviors are investigated. TEMPO-ZnPc shows multi-electron ring based reduction reactions and a TEMPO based oxidation reaction. Spectroelectrochemical measurements support these peak assignments. TEMPO-ZnPc is tested as a homogeneous and heterogeneous ascorbic acid (AA) sensor. Disappearance of TEMPO-ZnPc based reduction processes and the observation of new waves at around 0 and 1.20 V with respect to increasing AA concentration indicate the interaction of TEMPO-ZnPc with AA and usability of the complex as an electrochemical AA sensor. For practical usage as heterogeneous electrocatalysts for AA sensing, a glassy carbon electrode (GCE) is coated with TEMPO-ZnPc (GCE/TEMPO-ZnPc) and this modified electrode is tested as a heterogeneous AA sensor. The redox peak of GCE/TEMPO-ZnPc at 0.81 V decreases the peak current while a new wave is observed at 0.65 V during the titration of the electrolyte with AA. GCE/TEMPO-ZnPc sense AA with 1.75 × 10(-6) mol dm(-3) LOD with a sensitivity of 1.89 × 10(3) A cm mol(-1).


Assuntos
Ácido Ascórbico/análise , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Óxidos N-Cíclicos/química , Técnicas Eletroquímicas/métodos , Indóis/química , Magnetismo , Eletrodos , Isoindóis , Estrutura Molecular , Oxirredução
8.
Artigo em Inglês | MEDLINE | ID: mdl-26291672

RESUMO

4-Thiadiazole substituted phthalonitrile and peripherally tetra-substituted phthalocyanine Cu(II), Fe(II) and Ti(IV)O complexes have been synthesized for the first time. Electrochemical properties of these complexes were determined with voltammetric and in situ spectroelectrochemical measurements. CuPc has redox inactive Cu(2+) center, therefore it gave three Pc based reduction and two Pc based oxidation processes. TiOPc and FePc complexes gave metal based redox processes in addition to Pc based redox reactions due to the redox activity of Ti(4+)O and Fe(2+) metal centers. Although FePc also gave three reduction and two oxidation reactions, peak potentials of these processes are different than those of CuPc due to the different assignments of the redox reactions. TiOPc went to five reduction and one oxidation reactions. Assignments of the redox processes were carried out with in situ spectroelectrochemical measurements. Spectra and color of the electrogenerated redox species of the complexes were also determined with in situ spectroelectrochemical and in situ electrocolorimetric measurements. Distinct color differences between the electrogenerated redox species were observed, which indicated their possible electrochromic usages.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 153: 478-87, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26397034

RESUMO

The synthesis and characterization of novel peripherally tetra [1,2,4]-triazole substituted metal-free phthalocyanine and its metal complexes (Zn(II), Ni(II), Pb(II), Cu(II) and Fe(II)) and the investigation of electrochemical and spectroelectrochemical properties of metal-free, Zn(II), Pb(II), Fe(II) phthalocyanines were performed for the first time in this study. Electrochemical characterizations of the complexes were performed with voltammetric and in situ spectroelectrochemical measurements. Voltammetric responses of the complexes supported the proposed structures, since complexes bearing redox inactive Pc ring metal centers just gave Pc based electron transfer reactions, while iron phthalocyanine went to metal based electron transfer reaction in addition to the Pc based ones. Electron withdrawing nature of [1,2,4]-triazole substituents shifted the redox processes toward the positive potentials. All complexes were electropolymerized during the oxidation reactions in dichloromethane (DCM) solvent. Types of the metal center of the complexes altered the electropolymerization reactions of the complexes. Spectra and colors of the electrogenerated redox species of the complexes were also determined with in situ spectroelectrochemical and in situ electrocolorimetric measurements.

10.
Org Lett ; 16(14): 3764-7, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24987804

RESUMO

A new calix[4]pyrrole compound bearing an electropolymerizable EDOT substituent (1) was synthesized, and its electrochemical behavior was investigated. The anion sensor ability of 1 was also studied in solution and in the solid state. Compound 1 interacts with halide ions selectively in solution, which illustrates its possible application as an anion sensor. To test possible practical applications, 1 and EDOT were electropolymerized on an ITO electrode, and this electrode was used as an effective fluoride anion sensor in the solid state.

11.
Phys Chem Chem Phys ; 15(38): 15926-34, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23949120

RESUMO

Electrochemical and in situ spectroelectrochemical behaviors and electrocatalytic reduction of molecular oxygen with titanyl phthalocyanines (TiPc) bearing 3,4-(methylenedioxy)-phenoxy substituents were performed in aprotic solvents. Multi electrons and metal-based and ring-based redox processes of TiPcs indicate their possible electrocatalytic activity toward many target species. Different numbers and positions of the substituents of the complexes affect the peaks' character and assignment of the processes. The presence of O2 in the electrolyte system influences the electrochemical and spectral responses of TiPcs. Electrochemical and in situ spectroelectrochemical analysis indicates interaction of molecular oxygen with TiPcs and these interaction mechanisms depend on both the substituent environments of the complexes and the electrolyte system. Langmuir-Blodgett films of the complexes also catalyze molecular oxygen in aqueous media, which is a desired property for their practical application.

12.
Dalton Trans ; 39(42): 10228-37, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20922238

RESUMO

The stable uranyl complexes, [UO(2)(L)C(9)H(19)OH], were obtained from 3,5-dichlorosalicyl-(L(I)) and salicyl-aldehyde-S-propyl-thiosemicarbazones (L(II)) with substituted-salicylaldehyde in nonyl alcohol. The structures of the complexes have been characterized by elemental analysis, IR, (1)H NMR, conductivity, magnetic moment measurements, cyclic voltammetry, thermal gravimetric analysis and single crystal X-ray diffraction technique. The U(VI) centre is seven-coordinated in a distorted pentagonal bipyramidal geometry. The relative orientations of the nonyl alcohol and S-propyl group in the title complexes are completely different due to different crystal packing. Electrochemical behaviors of the thiosemicarbazone ligands and the uranyl complexes were studied using cyclic voltammetry and square wave voltammetry. Redox processes of the compounds are significantly influenced by the central metal ions and the nature of substituents on the thiosemicarbazones, which are important factors in controlling the redox properties. In situ spectroelectrochemical studies were employed to determine the colors and spectra of electro-generated species of the complexes.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Semicarbazidas/química , Temperatura , Urânio/química , Cor , Cristalografia por Raios X , Eletroquímica , Modelos Moleculares , Conformação Molecular , Análise Espectral , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...