Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. braz. j. urol ; 48(5): 830-839, Sept.-Oct. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394380

RESUMO

ABSTRACT Introduction: The aim of this study was to investigate the success of a deep learning model in detecting kidney stones in different planes according to stone size on unenhanced computed tomography (CT) images. Materials and Methods: This retrospective study included 455 patients who underwent CT scanning for kidney stones between January 2016 and January 2020; of them, 405 were diagnosed with kidney stones and 50 were not. Patients with renal stones of 0-1 cm, 1-2 cm, and >2 cm in size were classified into groups 1, 2, and 3, respectively. Two radiologists reviewed 2,959 CT images of 455 patients in three planes. Subsequently, these CT images were evaluated using a deep learning model. The accuracy rate, sensitivity, specificity, and positive and negative predictive values of the deep learning model were determined. Results: The training group accuracy rates of the deep learning model were 98.2%, 99.1%, and 97.3% in the axial plane; 99.1%, 98.2%, and 97.3% in the coronal plane; and 98.2%, 98.2%, and 98.2% in the sagittal plane, respectively. The testing group accuracy rates of the deep learning model were 78%, 68% and 70% in the axial plane; 63%, 72%, and 64% in the coronal plane; and 85%, 89%, and 93% in the sagittal plane, respectively. Conclusions: The use of deep learning algorithms for the detection of kidney stones is reliable and effective. Additionally, these algorithms can reduce the reporting time and cost of CT-dependent urolithiasis detection, leading to early diagnosis and management.

2.
Int Braz J Urol ; 48(5): 830-839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35838509

RESUMO

INTRODUCTION: The aim of this study was to investigate the success of a deep learning model in detecting kidney stones in different planes according to stone size on unenhanced computed tomography (CT) images. MATERIALS AND METHODS: This retrospective study included 455 patients who underwent CT scanning for kidney stones between January 2016 and January 2020; of them, 405 were diagnosed with kidney stones and 50 were not. Patients with renal stones of 0-1 cm, 1-2 cm, and >2 cm in size were classified into groups 1, 2, and 3, respectively. Two radiologists reviewed 2,959 CT images of 455 patients in three planes. Subsequently, these CT images were evaluated using a deep learning model. The accuracy rate, sensitivity, specificity, and positive and negative predictive values of the deep learning model were determined. RESULTS: The training group accuracy rates of the deep learning model were 98.2%, 99.1%, and 97.3% in the axial plane; 99.1%, 98.2%, and 97.3% in the coronal plane; and 98.2%, 98.2%, and 98.2% in the sagittal plane, respectively. The testing group accuracy rates of the deep learning model were 78%, 68% and 70% in the axial plane; 63%, 72%, and 64% in the coronal plane; and 85%, 89%, and 93% in the sagittal plane, respectively. CONCLUSIONS: The use of deep learning algorithms for the detection of kidney stones is reliable and effective. Additionally, these algorithms can reduce the reporting time and cost of CT-dependent urolithiasis detection, leading to early diagnosis and management.


Assuntos
Aprendizado Profundo , Cálculos Renais , Urolitíase , Humanos , Cálculos Renais/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...