Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 7: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763115

RESUMO

BACKGROUND: Primary cells enter replicative senescence after a limited number of cell divisions. This process needs to be considered in cell culture experiments, and it is particularly important for regenerative medicine. Replicative senescence is associated with reproducible changes in DNA methylation (DNAm) at specific sites in the genome. The mechanism that drives senescence-associated DNAm changes remains unknown - it may involve stochastic DNAm drift due to imperfect maintenance of epigenetic marks or it is directly regulated at specific sites in the genome. RESULTS: In this study, we analyzed the reorganization of nuclear architecture and DNAm changes during long-term culture of human fibroblasts and mesenchymal stromal cells (MSCs). We demonstrate that telomeres shorten and shift towards the nuclear center at later passages. In addition, DNAm profiles, either analyzed by MethylCap-seq or by 450k IlluminaBeadChip technology, revealed consistent senescence-associated hypermethylation in regions associated with H3K27me3, H3K4me3, and H3K4me1 histone marks, whereas hypomethylation was associated with chromatin containing H3K9me3 and lamina-associated domains (LADs). DNA hypermethylation was significantly enriched in the vicinity of genes that are either up- or downregulated at later passages. Furthermore, specific transcription factor binding motifs (e.g. EGR1, TFAP2A, and ETS1) were significantly enriched in differentially methylated regions and in the promoters of differentially expressed genes. CONCLUSIONS: Senescence-associated DNA hypermethylation occurs at specific sites in the genome and reflects functional changes in the course of replicative senescence. These results indicate that tightly regulated epigenetic modifications during long-term culture contribute to changes in nuclear organization and gene expression.

2.
Methods Mol Biol ; 1048: 309-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23929112

RESUMO

Somatic cells change continuously during culture expansion-long-term culture evokes increasing cell size, declining differentiation potential, and ultimate cell cycle arrest upon senescence. These changes are of particular relevance for cellular therapy which necessitates standardized products and reliable quality control. Recently, replicative senescence has been shown to be associated with highly reproducible epigenetic modifications. Here, we describe a simple method to track the state of senescence in mesenchymal stromal cells (MSCs) or fibroblasts by monitoring continuous DNA methylation (DNAm) changes at specific sites in the genome. Six CpG sites have been identified which reveal either linear hypermethylation or hypomethylation with respect to the number of cumulative population doublings (cPDs). Conversely, the DNAm level at these CpG sites can be analyzed-for example, by pyrosequencing of bisulfite-converted DNA-and then used for linear regression models to predict cPDs. Our method provides an epigenetic biomarker to determine the state of senescence in cell preparations.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Metilação de DNA/genética , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Ilhas de CpG/genética , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia
3.
Genome Res ; 23(2): 248-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23080539

RESUMO

Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.


Assuntos
Senescência Celular/genética , Metilação de DNA , Células-Tronco Pluripotentes/metabolismo , Adulto , Idoso , Linhagem Celular Transformada , Células Cultivadas , Senescência Celular/efeitos da radiação , Metilação de DNA/efeitos da radiação , Epigênese Genética/efeitos da radiação , Raios gama/efeitos adversos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Pessoa de Meia-Idade , Modelos Biológicos , Células-Tronco Pluripotentes/efeitos da radiação
4.
Aging Cell ; 11(2): 366-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22221451

RESUMO

Replicative senescence has fundamental implications on cell morphology, proliferation, and differentiation potential. Here, we describe a simple method to track long-term culture based on continuous DNA-methylation changes at six specific CpG sites. This epigenetic senescence signature can be used as biomarker for various cell types to predict the state of cellular senescence with regard to the number of passages, population doublings, or days of in vitro culture.


Assuntos
Senescência Celular , Ilhas de CpG , Metilação de DNA , Células Cultivadas , Epigênese Genética , Humanos
5.
Aging (Albany NY) ; 3(10): 1018-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22067257

RESUMO

All tissues of the organism are affected by aging. This process is associated with epigenetic modifications such as methylation changes at specific cytosine residues in the DNA (CpG sites). Here, we have identified an Epigenetic-Aging-Signature which is applicable for many tissues to predict donor age. DNA-methylation profiles of various cell types were retrieved from public data depositories - all using the HumanMethylation27 BeadChip platform which represents 27,578 CpG sites. Five datasets from dermis, epidermis, cervical smear, T-cells and monocytes were used for Pavlidis Template Matching to identify 19 CpG sites that are continuously hypermethylated upon aging (R>0.6; p-value<10-13). Four of these CpG sites (associated with the genes NPTX2, TRIM58, GRIA2 and KCNQ1DN) and an additional hypomethylated CpG site (BIRC4BP) were implemented in a model to predict donor age. This Epigenetic-Aging-Signature was tested on a validation group of eight independent datasets corresponding to several cell types from different tissues. Overall, the five CpG sites revealed age-associated DNA-methylation changes in all tissues. The average absolute difference between predicted and real chronological age was about 11 years. This method can be used to predict donor age in various cell preparations - for example in forensic analysis.


Assuntos
Envelhecimento/genética , Epigênese Genética , Ilhas de CpG , Metilação de DNA , Bases de Dados Genéticas , Humanos
6.
Aging (Albany NY) ; 3(9): 873-88, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22025769

RESUMO

Cells in culture undergo replicative senescence. In this study, we analyzed functional, genetic and epigenetic sequels of long-term culture in human mesenchymal stem cells (MSC). Already within early passages the fibroblastoid colony-forming unit (CFU-f) frequency and the differentiation potential of MSC declined significantly. Relevant chromosomal aberrations were not detected by karyotyping and SNP-microarrays. Subsequently, we have compared DNA-methylation profiles with the Infinium HumanMethylation27 Bead Array and the profiles differed markedly in MSC derived from adipose tissue and bone marrow. Notably, all MSC revealed highly consistent senescence-associated modifications at specific CpG sites. These DNA-methylation changes correlated with histone marks of previously published data sets, such as trimethylation of H3K9, H3K27 and EZH2 targets. Taken together, culture expansion of MSC has profound functional implications - these are hardly reflected by genomic instability but they are associated with highly reproducible DNA-methylation changes which correlate with repressive histone marks. Therefore replicative senescence seems to be epigenetically controlled.


Assuntos
Senescência Celular/fisiologia , Metilação de DNA , Histonas/metabolismo , Células-Tronco Mesenquimais/fisiologia , Tecido Adiposo/citologia , Adulto , Diferenciação Celular/genética , Células Cultivadas , Epigênese Genética , Feminino , Histonas/genética , Humanos , Cariotipagem , Masculino , Células-Tronco Mesenquimais/citologia , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
7.
PLoS One ; 6(3): e18012, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21437259

RESUMO

Regeneration after hematopoietic stem cell transplantation (HSCT) depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC) after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34(+) cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT) significantly enhanced proliferation, maintained primitive immunophenotype (CD34(+), CD133(+), CD45(-)) for more cell divisions and increased colony forming units (CFU) as well as the number of cobblestone area-forming cells (CAFC). The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT). Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1) increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Soro/metabolismo , Antígenos CD34 , Biomarcadores/metabolismo , Linhagem da Célula , Proliferação de Células , Quimiocinas/sangue , Ensaio de Unidades Formadoras de Colônias , Humanos , Imunofenotipagem , Transplante Autólogo , Regulação para Cima
8.
PLoS One ; 6(2): e16679, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21347436

RESUMO

Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (<23 years) and elderly donors (>60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner.


Assuntos
Envelhecimento/genética , Metilação de DNA , Fibroblastos/metabolismo , Pele/citologia , Adolescente , Idoso , Células da Medula Óssea/citologia , Criança , Epigênese Genética/genética , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
9.
PLoS Genet ; 5(9): e1000644, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19750210

RESUMO

The epigenetic regulation of gene expression by the covalent modification of histones is a fundamental mechanism required for the proper differentiation of germ line cells during development. Trimethylation of histone 3 lysine 9 (H3K9me3) leads to chromatin silencing and the formation of heterochromatin by recruitment of heterochromatin protein 1 (HP1). dSETDB1/Eggless (Egg), the ortholog of the human methyltransferase SETDB1, is the only essential H3K9 methyltransferase in Drosophila and is required for H3K9 trimethylation in the female germ line. Here we show that Windei (Wde), the Drosophila homolog of mouse mAM and human MCAF1, is an essential cofactor of Egg required for its nuclear localization and function in female germ line cells. By deletion analysis combined with coimmunoprecipitation, we have identified the protein regions in Wde and Egg that are necessary and sufficient for the interaction between the two proteins. We furthermore identified a region of Egg that gets covalently modified by SUMOylation, which may facilitate the formation of higher order chromatin-modifying complexes. Together with Egg, Wde localizes to euchromatin, is enriched on chromosome 4, and binds to the Painting of fourth (POF) protein. Our data provide the first genetic and phenotypic analysis of a mAM/MCAF1 homolog in a model organism and demonstrate its essential function in the survival of germ line cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/química , Células Germinativas/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Masculino , Metilação , Camundongos , Dados de Sequência Molecular , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Ligação Proteica , Transporte Proteico , Alinhamento de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...