Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3818, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360813

RESUMO

Avian A(H5N1) influenza virus poses an elevated zoonotic threat to humans, and no pharmacological products are currently registered for fast-acting pre-exposure protection in case of spillover leading to a pandemic. Here, we show that an epitope on the stem domain of H5 hemagglutinin is highly conserved and that the human monoclonal antibody CR9114, targeting that epitope, potently neutralizes all pseudotyped H5 viruses tested, even in the rare case of substitutions in its epitope. Further, intranasal administration of CR9114 fully protects mice against A(H5N1) infection at low dosages, irrespective of pre-existing immunity conferred by the quadrivalent seasonal influenza vaccine. These data provide a proof-of-concept for broad, pre-exposure protection against a potential future pandemic using the intranasal administration route. Studies in humans should assess if autonomous administration of a broadly-neutralizing monoclonal antibody is safe and effective and can thus contribute to pandemic preparedness.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Administração Intranasal , Anticorpos Antivirais , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Camundongos Endogâmicos BALB C
2.
Oncogene ; 42(25): 2074-2087, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37161053

RESUMO

Vimentin is highly expressed in metastatic cancers, and its expression correlates with poor patient prognoses. However, no causal in vivo studies linking vimentin and non-small cell lung cancer (NSCLC) progression existed until now. We use three complementary in vivo models to show that vimentin is required for the progression of NSCLC. First, we crossed LSL-KrasG12D; Tp53fl/fl mice (KPV+/+) with vimentin knockout mice (KPV-/-) to demonstrate that KPV-/- mice have attenuated tumor growth and improved survival compared with KPV+/+ mice. Next, we therapeutically treated KPV+/+ mice with withaferin A (WFA), an agent that disrupts vimentin intermediate filaments (IFs). We show that WFA suppresses tumor growth and reduces tumor burden in the lung. Finally, luciferase-expressing KPV+/+, KPV-/-, or KPVY117L cells were implanted into the flanks of athymic mice to track cancer metastasis to the lung. In KPVY117L cells, vimentin forms oligomers called unit-length filaments but cannot assemble into mature vimentin IFs. KPV-/- and KPVY117L cells fail to metastasize, suggesting that cell-autonomous metastasis requires mature vimentin IFs. Integrative metabolomic and transcriptomic analysis reveals that KPV-/- cells upregulate genes associated with ferroptosis, an iron-dependent form of regulated cell death. KPV-/- cells have reduced glutathione peroxidase 4 (GPX4) levels, resulting in the accumulation of toxic lipid peroxides and increased ferroptosis. Together, our results demonstrate that vimentin is required for rapid tumor growth, metastasis, and protection from ferroptosis in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Filamentos Intermediários/metabolismo , Vimentina/genética , Vimentina/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
3.
Eur J Epidemiol ; 38(3): 237-242, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738380

RESUMO

Neither vaccination nor natural infection result in long-lasting protection against SARS-COV-2 infection and transmission, but both reduce the risk of severe COVID-19. To generate insights into optimal vaccination strategies for prevention of severe COVID-19 in the population, we extended a Susceptible-Exposed-Infectious-Removed (SEIR) mathematical model to compare the impact of vaccines that are highly protective against severe COVID-19 but not against infection and transmission, with those that block SARS-CoV-2 infection. Our analysis shows that vaccination strategies focusing on the prevention of severe COVID-19 are more effective than those focusing on creating of herd immunity. Key uncertainties that would affect the choice of vaccination strategies are: (1) the duration of protection against severe disease, (2) the protection against severe disease from variants that escape vaccine-induced immunity, (3) the incidence of long-COVID and level of protection provided by the vaccine, and (4) the rate of serious adverse events following vaccination, stratified by demographic variables.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação
4.
Front Immunol ; 13: 924792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211387

RESUMO

Background: Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods: Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS ( 3 days), and IMV was compared. Findings: Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for

Assuntos
Bronquiolite , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Bronquiolite/genética , Criança , Cílios , Humanos , Lactente , Mucosa Nasal , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/genética , Índice de Gravidade de Doença
5.
Infect Dis Ther ; 11(6): 2287-2296, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309921

RESUMO

INTRODUCTION: The COVID-19 pandemic has demonstrated that there is an unmet need for the development of novel prophylactic antiviral treatments to control the outbreak of emerging respiratory virus infections. Passive antibody-based immunisation approaches such as intranasal antibody prophylaxis have the potential to provide immediately accessible universal protection as they act directly at the most common route of viral entry, the upper respiratory tract. The need for such products is very apparent for SARS-CoV-2 at present, given the relatively low effectiveness of vaccines to prevent infection and block virus onward transmission. We explore the benefits and challenges of the use of antibody-based nasal sprays prior and post exposure to the virus. METHODS: The classic susceptible-exposed-infectious-removed (SEIR) mathematical model was extended to describe the potential population-level impact of intranasal antibody prophylaxis on controlling the spread of an emerging respiratory infection in the community. RESULTS: Intranasal administration of monoclonal antibodies provides only a short-term protection to the mucosal surface. Consequently, sustained intranasal antibody prophylaxis of a substantial proportion of the population would be needed to contain infections. Post-exposure prophylaxis against the development of severe disease would be essential for the overall reduction in hospital admissions. CONCLUSION: Antibody-based nasal sprays could provide protection against infection to individuals that are likely to be exposed to the virus. Large-scale administration for a long period of time would be challenging. Intranasal antibody prophylaxis alone cannot prevent community-wide transmission of the virus. It could be used along with other protective measures, such as non-pharmaceutical interventions, to bridge the time required to develop and produce effective vaccines, and complement active immunisation strategies.

6.
Am J Respir Cell Mol Biol ; 66(2): 206-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731594

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 180 million people since the onset of the pandemic. Despite similar viral load and infectivity rates between children and adults, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the mechanisms proposed to account for this disparity. Our objective was to investigate the host response to SARS-CoV-2 in the nasal mucosa in children and adults and compare it with the host response to respiratory syncytial virus (RSV) and influenza virus. We analyzed clinical outcomes and gene expression in the nasal mucosa of 36 children with SARS-CoV-2, 24 children with RSV, 9 children with influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric and 13 healthy adult controls. In both children and adults, infection with SARS-CoV-2 led to an IFN response in the nasal mucosa. The magnitude of the IFN response correlated with the abundance of viral reads, not the severity of illness, and was comparable between children and adults infected with SARS-CoV-2 and children with severe RSV infection. Expression of ACE2 and TMPRSS2 did not correlate with age or presence of viral infection. SARS-CoV-2-infected adults had increased expression of genes involved in neutrophil activation and T-cell receptor signaling pathways compared with SARS-CoV-2-infected children, despite similar severity of illness and viral reads. Age-related differences in the immune response to SARS-CoV-2 may place adults at increased risk of developing severe illness.


Assuntos
Envelhecimento/imunologia , COVID-19/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade nas Mucosas , Mucosa Nasal/imunologia , SARS-CoV-2/imunologia , Adolescente , Fatores Etários , Enzima de Conversão de Angiotensina 2/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mucosa Nasal/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Serina Endopeptidases/imunologia
7.
medRxiv ; 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33532801

RESUMO

RATIONALE: Despite similar viral load and infectivity rates between children and adults infected with SARS-CoV-2, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the proposed mechanisms. OBJECTIVES: To investigate the host response to SARS-CoV-2, respiratory syncytial virus (RSV), and influenza virus (IV) in the nasal mucosa in children and adults. METHODS: Clinical outcomes and gene expression in the nasal mucosa were analyzed in 36 children hospitalized with SARS-CoV-2 infection, 24 children with RSV infection, 9 children with IV infection, 16 adults with mild to moderate SARS-CoV-2 infection, and 7 healthy pediatric and 13 healthy adult controls. RESULTS: In both children and adults, infection with SARS-CoV-2 leads to an interferon response in the nasal mucosa. The magnitude of the interferon response correlated with the abundance of viral reads and was comparable between symptomatic children and adults infected with SARS-CoV-2 and symptomatic children infected with RSV and IV. Cell type deconvolution identified an increased abundance of immune cells in the samples from children and adults with a viral infection. Expression of ACE2 and TMPRSS2 - key entry factors for SARS-CoV-2 - did not correlate with age or presence or absence of viral infection. CONCLUSIONS: Our findings support the hypothesis that differences in the immune response to SARS-CoV-2 determine disease severity, independent of viral load and interferon response at the primary infection primary site.

8.
Am J Respir Cell Mol Biol ; 59(2): 145-157, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29624415

RESUMO

Since the first publications coining the term RNA-seq (RNA sequencing) appeared in 2008, the number of publications containing RNA-seq data has grown exponentially, hitting an all-time high of 2,808 publications in 2016 (PubMed). With this wealth of RNA-seq data being generated, it is a challenge to extract maximal meaning from these datasets, and without the appropriate skills and background, there is risk of misinterpretation of these data. However, a general understanding of the principles underlying each step of RNA-seq data analysis allows investigators without a background in programming and bioinformatics to critically analyze their own datasets as well as published data. Our goals in the present review are to break down the steps of a typical RNA-seq analysis and to highlight the pitfalls and checkpoints along the way that are vital for bench scientists and biomedical researchers performing experiments that use RNA-seq.


Assuntos
Análise de Dados , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Animais , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Camundongos Endogâmicos C57BL , Controle de Qualidade , Análise de Sequência de RNA/métodos , Software , Transcriptoma/genética
9.
Circ Heart Fail ; 11(2): e004000, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29449366

RESUMO

BACKGROUND: Wild-type transthyretin amyloidosis (ATTRwt), an underappreciated cause of heart failure in older adults, is challenging to diagnose and monitor in the absence of validated, disease-specific biomarkers. We examined the prognostic use and survival association of serum TTR (transthyretin) concentration in ATTRwt. METHODS AND RESULTS: Patients with biopsy-proven ATTRwt were retrospectively identified. Serum TTR, cardiac biomarkers, and echocardiographic parameters were assessed at baseline and follow-up evaluations. Statistical analyses included Kaplan-Meier method, Cox proportional hazard survival models, and receiver-operating characteristic curve analysis. Median serum TTR concentration at presentation was 23 mg/dL (n=116). Multivariate predictors of shorter overall survival were decreased TTR, left ventricular ejection fraction and elevated cTn-I (cardiac troponin I); an inclusive model demonstrated superior accuracy in 4-year survival prediction by receiver-operating characteristic curve analysis (area under the curve, 0.77). TTR values lower than the normal limit, <18 mg/dL, were associated with shorter survival (2.8 versus 4.1 years; P=0.03). Further, TTR values at 1- and 2-year follow-ups were significantly lower (P<0.001) in untreated patients (n=23) compared with those treated with TTR stabilizer, diflunisal (n=12), after baseline evaluation. During 2-year follow-up, unchanged TTR corresponded to increased cTn-I (P=0.006) in untreated patients; conversely, the diflunisal-treated group showed increased TTR (P=0.001) and stabilized cTn-I and left ventricular ejection fraction at 1 year. CONCLUSIONS: In this series of biopsy-proven ATTRwt, lower baseline serum TTR concentration was associated with shorter survival as an independent predictor of outcome. Longitudinal analysis demonstrated that decreasing TTR corresponded to worsening cardiac function. These data suggest that TTR may be a useful prognostic marker and predictor of outcome in ATTRwt.


Assuntos
Insuficiência Cardíaca/sangue , Pré-Albumina/metabolismo , Valor Preditivo dos Testes , Curva ROC , Idoso , Idoso de 80 Anos ou mais , Feminino , Insuficiência Cardíaca/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Função Ventricular Esquerda/fisiologia
10.
J Immunol ; 200(7): 2391-2404, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29445006

RESUMO

Healthy children are more likely to die of influenza A virus (IAV) infection than healthy adults. However, little is known about the mechanisms underlying the impact of young age on the development of life-threatening IAV infection. We report increased mortality in juvenile mice compared with adult mice at each infectious dose of IAV. Juvenile mice had sustained elevation of type I IFNs and persistent NLRP3 inflammasome activation in the lungs, both of which were independent of viral titer. Juvenile mice, but not adult mice, had increased MCP-1 levels that remained high even after viral clearance. Importantly, continued production of MCP-1 was associated with persistent recruitment of monocytes to the lungs and prolonged elevation of inflammatory cytokines. Transcriptional signatures of recruited monocytes to the juvenile and adult IAV-infected lungs were assessed by RNA-seq. Genes associated with a proinflammatory signature were upregulated in the juvenile monocytes compared with adult monocytes. Depletion of monocytes with anti-CCR2 Ab decreased type I IFN secretion, NLRP3 inflammasome activation, and lung injury in juvenile mice. This suggests an exaggerated inflammatory response mediated by increased recruitment of monocytes to the lung, and not an inability to control viral replication, is responsible for severe IAV infection in juvenile mice. This study provides insight into severe IAV infection in juveniles and identifies key inflammatory monocytes that may be central to pediatric acute lung injury secondary to IAV.


Assuntos
Interferon Tipo I/sangue , Lesão Pulmonar/patologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Orthomyxoviridae/patologia , Animais , Quimiocina CCL2/sangue , Modelos Animais de Doenças , Inflamação/imunologia , Vírus da Influenza A , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Pulmão/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/virologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Carga Viral , Replicação Viral
11.
J Proteome Res ; 16(11): 4104-4112, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28922609

RESUMO

Transthyretin (TTR), normally a plasma circulating protein, can become misfolded and aggregated, ultimately leading to extracellular deposition of amyloid fibrils usually targeted to heart or nerve tissues. Referred to as TTR-associated amyloidoses (ATTR), this group of diseases is frequently life threatening and fatal if untreated. ATTR, caused by amyloid-forming variant TTR proteins (ATTRm) that arise from point mutations in the TTR gene, were classically referred to as familial amyloid cardiomyopathy (FAC) or familial amyloid polyneuropathy (FAP), reflecting the clinical phenotype. FAC and FAP are pathologies that can be challenging to diagnose as there are no definitive biomarkers of disease; moreover, disease-specific measures of progression are lacking, and treatment options are limited. Thus, the discovery of sensitive and specific indicators of disease has the potential to improve recognition, enable accurate measurement of amyloid progression and response to treatment, and reveal key information regarding FAC and FAP pathobiological mechanisms. In this study, the goal was to investigate serum proteomic features unique to FAC and FAP types of ATTRm. Multiple-reaction monitoring mass spectrometry (MRM-MS), a powerful technique in profiling proteomes, was used to measure the serum concentrations of 160 proteins in samples from FAC and FAP patients. Results were compared to data from healthy control sera obtained from individuals matched to age (≥60 years), gender (male), and race (Caucasian). Proteomic analyses of ATTRm (FAC and FAP) and control samples showed significant concentration differences in 107 of 192 (56%) of the serum proteins that were studied. In comparing FAC to FAP, differences in concentrations as well as interactions and functions of several proteins were identified as unique to each disease; significantly lower levels of TTR were specific to FAC, but not to FAP. Annotated functional clustering identified extracellular region, signal, and signal peptide as terms common to FAC and FAP. Conversely, disulfide bond was unique to FAC; secreted, glycosylation site: N-linked, glycosylation, glycoprotein, polymorphism, and sequence variant were associated solely with FAP. Predicted protein-protein associations in FAC were seen for reaction, binding, and activation processes; no associations were found in FAP. This study demonstrates significant proteomic differences between ATTRm patient and control sera, as well as ATTRm phenotype-associated variations in the circulating levels of several proteins including TTR. The identification of serum proteins unique to FAC and FAP may have diagnostic and prognostic utility and could possibly provide important clues about disease mechanisms.


Assuntos
Neuropatias Amiloides Familiares/sangue , Proteínas Sanguíneas/análise , Idoso , Idoso de 80 Anos ou mais , Neuropatias Amiloides Familiares/diagnóstico , Cardiomiopatias/diagnóstico , Estudos de Casos e Controles , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Pré-Albumina/genética , Ligação Proteica , Proteômica/métodos
13.
Front Immunol ; 8: 782, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740490

RESUMO

Influenza A virus (IAV) is a significant cause of life-threatening lower respiratory tract infections in children. Antiviral therapy is the mainstay of treatment, but its effectiveness in this age group has been questioned. In addition, damage inflicted on the lungs by the immune response to the virus may be as important to the development of severe lung injury during IAV infection as the cytotoxic effects of the virus itself. A crucial step in the immune response to IAV is activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the subsequent secretion of the inflammatory cytokines, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18). The IAV matrix 2 proton channel (M2) has been shown to be an important activator of the NLRP3 inflammasome during IAV infection. We sought to interrupt this ion channel-mediated activation of the NLRP3 inflammasome through inhibition of NLRP3 or the cytokine downstream from its activation, IL-1ß. Using our juvenile mouse model of IAV infection, we show that inhibition of the NLRP3 inflammasome with the small molecule inhibitor, MCC950, beginning 3 days after infection with IAV, improves survival in juvenile mice. Treatment with MCC950 reduces NLRP3 levels in lung homogenates, decreases IL-18 secretion into the alveolar space, and inhibits NLRP3 inflammasome activation in alveolar macrophages. Importantly, inhibition of the NLRP3 inflammasome with MCC950 does not impair viral clearance. In contrast, inhibition of IL-1ß signaling with the IL-1 receptor antagonist, anakinra, is insufficient to protect juvenile mice from IAV. Our findings suggest that targeting the NLRP3 inflammasome in juvenile IAV infection may improve disease outcomes in this age group.

14.
JAMA Cardiol ; 2(3): 305-313, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28196196

RESUMO

Importance: Transthyretin cardiac amyloidosis (ATTR) is an underrecognized cause of heart failure (HF) in older individuals, owing in part to difficulty in diagnosis. ATTR can result from substitution of valine for isoleucine at codon 122 of the transthyretin (TTR) gene (V122I), present in 3.43% of African American individuals. Objective: To examine whether serum retinol-binding protein 4 (RBP4), an endogenous TTR ligand, could be used as a diagnostic test for ATTR V122I amyloidosis. Design, Setting, and Participants: In this combined prospective and retrospective cohort study performed at a tertiary care referral center, 50 African American patients 60 years or older with nonamyloid HF and cardiac wall thickening prospectively genotyped from September 1, 2014, through December 31, 2015, and a comparator cohort of 25 patients with biopsy-proven ATTR V122I amyloidosis recruited from September 1, 2009, through November 31, 2014, comprised the development cohort. Twenty-seven African American patients and 9 patients with ATTR V122I amyloidosis comprised the validation cohort. Main Outcomes and Measures: Circulating RBP4, TTR, B-type natriuretic peptide (BNP), and troponin I (TnI) concentrations and electrocardiographic, echocardiographic, and clinical characteristics were assessed in all patients. Receiver operating characteristic (ROC) analysis was performed to identify optimal thresholds for ATTR V122I amyloidosis identification. A clinical prediction rule was developed using penalized logistic regression, evaluated using ROC analysis and validated in an independent cohort of cases and controls. Results: Age, sex, and BNP and TnI concentrations were similar between the 25 patients with ATTR V122I amyloidosis (mean [SD] age, 72.2 [7.4] years; 18 male [72%]) and the 50 controls (mean [SD] age, 69.2 [5.7] years; 31 male [62%]). Serum RBP4 concentration was lower in patients with ATTR V122I amyloidosis compared with nonamyloid controls (31.5 vs 49.4 µg/mL, P < .001), and the difference persisted after controlling for potential confounding variables. Left ventricular ejection fraction was lower in patients with ATTR V122I amyloidosis (mean [SD], 40% [14%] vs 57% [14%], P < .001), whereas interventricular septal diameter was higher (mean [SD], 16 [3] vs 14 [2] mm, P < .001). The ROC analysis identified RBP4 as a sensitive identifier of ATTR V122I amyloidosis (area under the curve [AUC] = 0.78; 95% CI, 0.67-0.88). A clinical prediction algorithm composed of RBP4, TTR, left ventricular ejection fraction, interventricular septal diameter, mean limb lead QRS voltage, and grade 3 diastolic dysfunction yielded excellent discriminatory capacity for ATTR V122I amyloidosis (AUC = 0.97; 95% CI, 0.93-1.00), whereas a 4-parameter model, including RBP4 concentration, retained excellent discrimination (AUC = 0.92; 95% CI, 0.86-0.99). The models maintained excellent discrimination in the validation cohort. Conclusions and Relevance: A prediction model using circulating RBP4 concentration and readily available clinical parameters accurately discriminated ATTR V122I amyloidosis from nonamyloid HF in a case-matched cohort. This clinical algorithm may be useful for identification of ATTR V122I amyloidosis in elderly African American patients with HF.


Assuntos
Neuropatias Amiloides Familiares/sangue , Negro ou Afro-Americano , Cardiomiopatias/sangue , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Idoso , Neuropatias Amiloides Familiares/diagnóstico , Neuropatias Amiloides Familiares/etnologia , Biomarcadores/sangue , Biópsia , Cardiomiopatias/diagnóstico , Cardiomiopatias/etnologia , Estudos de Casos e Controles , DNA/genética , Análise Mutacional de DNA , Ecocardiografia , Eletrocardiografia , Feminino , Seguimentos , Humanos , Incidência , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Mutação , Miocárdio/patologia , Pré-Albumina/genética , Pré-Albumina/metabolismo , Estudos Prospectivos , Curva ROC , Função Ventricular Esquerda
15.
J Proteome Res ; 16(4): 1659-1668, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28196416

RESUMO

Transthyretin-associated forms of cardiac amyloidosis are fatal protein misfolding diseases that can be inherited (ATTRm) or acquired (ATTRwt). An accurate diagnosis of ATTR amyloidosis can be challenging as biopsy evidence, usually from the affected organ, is required. Precise biomarkers for ATTR disease identification and monitoring are undiscovered, disease-specific therapeutic options are needed, and the current understanding of ATTR molecular pathogenesis is limited. The aim of this study was to investigate and compare the serum proteomes in ATTRm and ATTRwt cardiac amyloidosis to identify differentially expressed blood proteins that were disease-specific. Using multiple-reaction monitoring mass spectrometry (MRM-MS), the concentrations of 160 proteins were analyzed in serum samples from ATTRm and ATTRwt patients, and a healthy control group. Patient and control sera were matched to age (≥60 years), gender (male), and race (Caucasian). The circulating concentrations of 123/160 proteins were significantly different in patient vs control sera; TTR and retinol-binding protein (RBP4) levels were significantly decreased (p < 0.03) in ATTRm compared to controls. In ATTRm, 14/123 proteins were identified as unique to that group and found generally to be lower than controls; moreover, the concentrations of RBP4 and 6 other proteins in this group were significantly different (p < 0.04) compared to ATTRwt. Predicted interactions among the 14 proteins unique to ATTRm were categorized as reaction and binding associations. Alternatively, 27 proteins were found to be unique to ATTRwt with associated interactions defined as activation, catalysis, and inhibition, in addition to reaction and binding. This study demonstrates significant proteomic differences between ATTR patient and control sera, and disease-associated variations in circulating levels of several proteins including TTR and RBP4. The identification of serum proteins unique to ATTRm and ATTRwt cardiac amyloidosis may have diagnostic and prognostic utility, and may provide important clues about disease mechanisms.


Assuntos
Neuropatias Amiloides Familiares/sangue , Biomarcadores/sangue , Proteínas Sanguíneas/genética , Deficiências na Proteostase/sangue , Idoso , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Biópsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteoma/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia
16.
Stem Cell Reports ; 1(5): 451-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24286032

RESUMO

Familial transthyretin amyloidosis (ATTR) is an autosomal-dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR, protein secreted from the liver aggregates and forms fibrils in target organs, chiefly the heart and peripheral nervous system, highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here, we describe the directed differentiation of ATTR patient-specific iPSCs into hepatocytes that produce mutant TTR, and the cardiomyocytes and neurons normally targeted in the disease. We demonstrate that iPSC-derived neuronal and cardiac cells display oxidative stress and an increased level of cell death when exposed to mutant TTR produced by the patient-matched iPSC-derived hepatocytes, recapitulating essential aspects of the disease in vitro. Furthermore, small molecule stabilizers of TTR show efficacy in this model, validating this iPSC-based, patient-specific in vitro system as a platform for testing therapeutic strategies.


Assuntos
Neuropatias Amiloides Familiares/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Neuropatias Amiloides Familiares/genética , Células Cultivadas , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo , Pré-Albumina/genética , Pré-Albumina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...