Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Neurobiol Aging ; 141: 66-73, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38823205

RESUMO

Astrocytes in Alzheimer's disease (AD) exert a pivotal role in the maintenance of blood-brain barrier (BBB) integrity essentially through structural support and release of soluble factors. This study provides new insights into the vascular remodeling processes occurring in AD, and reveals, in vivo, a pathological profile of astrocytic secretion involving Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinases (MMP)-9, MMP-2 and Endothelin-1 (ET-1). Cerebrospinal fluid (CSF) levels of VEGF, MMP-2/-9 were lower in patients belonging to the AD continuum, compared to aged-matched controls. CSF levels of VEGF and ET-1 positively correlated with MMP-9 but negatively with MMP-2, suggesting a complex vascular remodeling process occurring in AD. Only MMP-2 levels were significantly associated with CSF AD biomarkers. Conversely, higher MMP-2 (ß = 0.411, p < 0.001), ET-1 levels (ß = 0.344, p < 0.001) and VEGF (ß = 0.221, p = 0.022), were associated with higher BBB permeability. Astrocytic-derived vascular remodeling factors are altered in AD, disclosing the failure of important protective mechanisms which proceed independently alongside AD pathology.

2.
Neurol Int ; 16(3): 567-589, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38804482

RESUMO

Paired associative stimulation (PAS) is a non-invasive brain stimulation technique combining transcranial magnetic stimulation and peripheral nerve stimulation. PAS allows connections between cortical areas and peripheral nerves (C/P PAS) or between cortical regions (C/C PAS) to be strengthened or weakened by spike-timing-dependent neural plasticity mechanisms. Since PAS modulates both neurophysiological features and motor performance, there is growing interest in its application in neurorehabilitation. We aimed to synthesize evidence on the motor rehabilitation role of PAS in stroke patients. We performed a literature search following the PRISMA Extension for Scoping Reviews Framework. Eight studies were included: one investigated C/C PAS between the cerebellum and the affected primary motor area (M1), seven applied C/P PAS over the lesional, contralesional, or both M1. Seven studies evaluated the outcome on upper limb and one on lower limb motor recovery. Although several studies omit crucial methodological details, PAS highlighted effects mainly on corticospinal excitability, and, more rarely, an improvement in motor performance. However, most studies failed to prove a correlation between neurophysiological changes and motor improvement. Although current studies seem to suggest a role of PAS in post-stroke rehabilitation, their heterogeneity and limited number do not yet allow definitive conclusions to be drawn.

3.
Expert Rev Med Devices ; : 1-12, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38768088

RESUMO

INTRODUCTION: Spinal cord injuries (SCI) often result in motor impairment and lifelong disability. METHODS: This systematic review, conducted in agreement with PRISMA guidelines, aimed to evaluate the effects of cortico-spinal paired associative stimulation (PAS) on motor outcomes in individuals with SCI. PubMed, Scopus/EMBASE, Pedro, and Cochrane databases were consulted from inception to 2023/01/12. RESULTS: In 1021 articles, 10 studies involving 84 patients meet the inclusion criteria, 7 case series/study, and 3 clinical trials. Despite light differences, the included studies performed a cortico-peripheral PAS using a single transcranial magnetic stimulation and high frequency electrical peripheral nerve stimulation for a consistent number of sessions (>20). All included studies reported improvement in motor outcomes recorded via clinical and/or neurophysiological assessment. CONCLUSION: Available evidence showed an increase in motor outcomes after PAS stimulation. Indeed, both clinical and neurophysiological outcomes suggest the effectiveness of a high number of PAS sessions in chronic individuals with SCI. Due to a limited number of studies and an unsatisfactory study design, well-designed RCTs are needed to confirm the potentiality of these approaches and clarify the adequate dose-response of PAS in the SCI population. REGISTRATION ID: The protocol was registered on the PROSPERO database (CRD42023485703).

4.
Sci Rep ; 14(1): 7871, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570543

RESUMO

The inhibition of action is a fundamental executive mechanism of human behaviour that involve a complex neural network. In spite of the progresses made so far, many questions regarding the brain dynamics occurring during action inhibition are still unsolved. Here, we used a novel approach optimized to investigate real-time effective brain dynamics, which combines transcranial magnetic stimulation (TMS) with simultaneous electroencephalographic (EEG) recordings. 22 healthy volunteers performed a motor Go/NoGo task during TMS of the hand-hotspot of the primary motor cortex (M1) and whole-scalp EEG recordings. We reconstructed source-based real-time spatiotemporal dynamics of cortical activity and cortico-cortical connectivity throughout the task. Our results showed a task-dependent bi-directional change in theta/gamma supplementary motor cortex (SMA) and M1 connectivity that, when participants were instructed to inhibit their response, resulted in an increase of a specific TMS-evoked EEG potential (N100), likely due to a GABA-mediated inhibition. Interestingly, these changes were linearly related to reaction times, when participants were asked to produce a motor response. In addition, TMS perturbation revealed a task-dependent long-lasting modulation of SMA-M1 natural frequencies, i.e. alpha/beta activity. Some of these results are shared by animal models and shed new light on the physiological mechanisms of motor inhibition in humans.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Tempo de Reação/fisiologia , Eletroencefalografia/métodos , Encéfalo , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia
6.
Neurol Sci ; 45(5): 2347-2351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353846

RESUMO

Usually, positive neurological symptoms are considered as the consequence of a mere, afinalistic and abnormal increase in function of specific brain areas. However, according to the Theory of Active Inference, which argues that action and perception constitute a loop that updates expectations according to a Bayesian model, the brain is rather an explorer that formulates hypotheses and tests them to assess the correspondence between internal models and reality. Moreover, the cerebral cortex is characterised by a continuous "conflict" between different brain areas, which constantly attempt to expand in order to acquire more of the limited available computational resources, by means of their dopamine-induced neuroplasticity. Thus, it has recently been suggested that dreams, during rapid eye movement sleep (REMS), protect visual brain areas (deprived of their stimuli during rest) from being conquered by other normally stimulated ones. It is therefore conceivable that positive symptoms also have a functional importance for the brain. We evaluate supporting literature data of a 'defensive' role of positive symptoms and the relevance of dopamine-induced neuroplasticity in the context of neurodegenerative and psychiatric diseases. Furthermore, the possible functional significance of idiopathic REMS-related behavioural disorder as well as phantom limb syndrome is examined. We suggest that positive neurological symptoms are not merely a passive expression of a damage, but active efforts, related to dopamine-induced plasticity, to maintain a correct relationship between the external world and its brain representation, thus preventing healthy cortical areas from ousting injured ones.


Assuntos
Dopamina , Transtorno do Comportamento do Sono REM , Humanos , Teorema de Bayes , Encéfalo/fisiologia , Sono REM/fisiologia
7.
Brain Struct Funct ; 229(3): 789-795, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403781

RESUMO

Music represents a salient stimulus for the brain with two key features: pitch and rhythm. Few data are available on cognitive analysis of music listening in musically naïve healthy participants. Beyond auditory cortices, neuroimaging data showed the involvement of prefrontal cortex in pitch and of cerebellum in rhythm. The present study is aimed at investigating the role of prefrontal and cerebellar cortices in both pitch and rhythm processing. The performance of fifteen participants without musical expertise was investigated in a listening discrimination task. The task required to decide whether two eight-element melodic sequences were equal or different according to pitch or rhythm characteristics. Before the task, we applied a protocol of continuous theta burst transcranial magnetic stimulation interfering with the activity of the left cerebellar hemisphere (lCb), right inferior frontal gyrus (rIFG), or vertex (Cz-control site), in a within cross-over design. Our results showed that participants were more accurate in pitch than rhythm tasks. Importantly, the reaction times were slower following rIFG or lCb stimulations in both tasks. Notably, frontal and cerebellar stimulations did not induce any motor effect in right and left hand. The present findings point to the role of the fronto-cerebellar network in music processing with a single mechanism for both pitch and rhythm patterns.


Assuntos
Córtex Auditivo , Música , Humanos , Encéfalo/fisiologia , Cerebelo/fisiologia , Estimulação Magnética Transcraniana , Mapeamento Encefálico
8.
Top Stroke Rehabil ; 31(1): 66-85, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083139

RESUMO

OBJECTIVE: To investigate the usefulness of inertial measurement units (IMUs) in the assessment of motor function of the upper limb (UL) in accordance with the international classification of functioning (ICF). DATA SOURCES: PubMed; Scopus; Embase; WoS and PEDro databases were searched from inception to 1 February 2022. METHODS: The current systematic review follows PRISMA recommendations. Articles including IMU assessment of UL in stroke individuals have been included and divided into four ICF categories (b710, b735, b760, d445). We used correlation meta-analysis to pool the Fisher Z-score of each correlation between kinematics and clinical assessment. RESULTS: A total of 35 articles, involving 475 patients, met the inclusion criteria. In the included studies, IMUs have been employed to assess the mobility of joint functions (n = 6), muscle tone functions (n = 4), control of voluntary movement functions (n = 15), and hand and arm use (n = 15). A significant correlation was found in overall meta-analysis based on 10 studies, involving 213 subjects: (r = 0.69) (95% CI: 0.69/0.98; p < 0.001) as in the d445 (r = 0.71) and b760 (r = 0.64) ICF domains, with no heterogeneity across the studies. CONCLUSION: The literature supports the integration of IMUs and conventional clinical assessment in functional evaluation of the UL after a stroke. The use of a limited number of wearable sensors can provide additional kinematic features of UL in all investigated ICF domains, especially in the ADL tasks when a strong correlation with clinical evaluation was found.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Extremidade Superior , Mãos , Fenômenos Biomecânicos
9.
J Physiol ; 602(1): 205-222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059677

RESUMO

In the absence of disease, humans produce smooth and accurate movement trajectories. Despite such 'macroscopic' aspect, the 'microscopic' structure of movements reveals recurrent (quasi-rhythmic) discontinuities. To date, it is unclear how the sensorimotor system contributes to the macroscopic and microscopic architecture of movement. Here, we investigated how corticospinal excitability changes in relation to microscopic fluctuations that are naturally embedded within larger macroscopic variations in motor output. Participants performed a visuomotor tracking task. In addition to the 0.25 Hz modulation that is required for task fulfilment (macroscopic scale), the motor output shows tiny but systematic fluctuations at ∼2 and 8 Hz (microscopic scales). We show that motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) during task performance are consistently modulated at all (time) scales. Surprisingly, MEP modulation covers a similar range at both micro- and macroscopic scales, even though the motor output differs by several orders of magnitude. Thus, corticospinal excitability finely maps the multiscale temporal patterning of the motor output, but it does so according to a principle of scale invariance. These results suggest that corticospinal excitability indexes a relatively abstract level of movement encoding that may reflect the hierarchical organisation of sensorimotor processes. KEY POINTS: Motor behaviour is organised on multiple (time)scales. Small but systematic ('microscopic') fluctuations are engrained in larger and slower ('macroscopic') variations in motor output, which are instrumental in deploying the desired motor plan. Corticospinal excitability is modulated in relation to motor fluctuations on both macroscopic and microscopic (time)scales. Corticospinal excitability obeys a principle of scale invariance, that is, it is modulated similarly at all (time)scales, possibly reflecting hierarchical mechanisms that optimise motor encoding.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Tratos Piramidais/fisiologia , Estimulação Magnética Transcraniana/métodos , Movimento , Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia
10.
Eur J Neurol ; 31(1): e16095, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823706

RESUMO

INTRODUCTION: Inflammation is an important player in Alzheimer's disease (AD), whose effects can be influenced by the blood-brain barrier (BBB). Here, we investigated the relationship between BBB permeability, indicated by cerebrospinal fluid (CSF)/plasma albumin quotient (Qalb), and CSF indexes of neuroinflammation in a cohort of biologically defined AD patients. METHODS: Fifty-nine consecutive patients with mild cognitive impairment (MCI) or early AD (Mini-Mental State Examination [MMSE] >22) underwent CSF analysis for inflammatory cytokines (interleukin [IL]-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, Il-10, IL-12, IL-13, IL-17, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], granulocyte-monocyte colony-stimulating factor [GM-CSF], granulocyte colony-stimulating factor [G-CSF]). Using backward stepwise linear regression analysis, we explored the potential influence of each cytokine CSF level on Qalb considering age, sex, and apolipoprotein E (APOE) as covariates. RESULTS: Higher levels of IL-4 (ß = 0.356, 0.005) and IL-8 (ß = 0.249, 0.05) were associated with higher Qalb values, while macrophage inflammatory protein-1α (MIP-1ß) (ß = -0.274; p = 0.032) and TNF-α (ß = -0.248; p = 0.031) showed a significant negative association with BBB permeability. Age was also positively associated with Qalb (ß = 0.283; p = 0.016). CONCLUSIONS: Despite the overall integrity of the BBB, its permeability could either influence or be influenced by central neuroinflammation, reflected by CSF cytokine levels. This is in line with previous studies that showed that patients with a more intact barrier are those with more prominent neurodegeneration. Our findings suggest that different neuroinflammatory profiles can be associated with different levels of BBB permeability in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Fator de Necrose Tumoral alfa , Doenças Neuroinflamatórias , Barreira Hematoencefálica , Interleucina-4 , Interleucina-8 , Citocinas , Permeabilidade
11.
J Alzheimers Dis ; 97(2): 599-607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160356

RESUMO

BACKGROUND: Blood-brain barrier (BBB) dysfunction could favor the pathogenesis and progression of Alzheimer's disease (AD). Vascular risk factors (VRF) could worsen BBB integrity, thus promoting neurode generation. OBJECTIVE: To investigate BBB permeability and its relation with VRF along the AD continuum (ADc). Cerebrospinal fluid (CSF) Amyloid (A) and p-tau (T) levels were used to stratify patients. METHODS: We compared CSF/plasma albumin ratio (QAlb) of 131 AD patients and 24 healthy controls (HC). APOE genotype and VRF were evaluated for each patient. Spearman's Rho correlation was used to investigate the associations between Qalb and CSF AD biomarkers. Multivariate regression analyses were conducted to explore the relationship between Qalb and AD biomarkers, sex, age, cognitive status, and VRF. RESULTS: QAlb levels did not show significant difference between ADc patients and HC (p = 0.984). However, QAlb was significantly higher in A + T-compared to A + T+ (p = 0.021). In ADc, CSF p-tau demonstrated an inverse correlation with QAlb, a finding confirmed in APOE4 carriers (p = 0.002), but not in APOE3. Furthermore, in APOE4 carriers, sex, hypertension, and hypercholesterolemia were associated with QAlb (p = 0.004, p = 0.038, p = 0.038, respectively), whereas only sex showed an association in APOE3 carriers (p = 0.026). CONCLUSIONS: BBB integrity is preserved in ADc. Among AT categories, A + T-have a more permeable BBB than A + T+. In APOE4 carriers, CSF p-tau levels display an inverse association with BBB permeability, which in turn, seems to be affected by VRF. These data suggest a possible relationship between BBB efficiency, VRF and CSF p-tau levels depending on APOE genotype.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Barreira Hematoencefálica/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/líquido cefalorraquidiano , Apolipoproteína E3 , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Fatores de Risco , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano
12.
Front Neurol ; 14: 1268165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116107

RESUMO

Background: Fragile X syndrome (FXS) is the leading cause of genetic intellectual disability. Among the neurobehavioral dysfunctions in FXS individuals, language development and literacy are compromised. Recent evidence hypothesized that the disruption of excitatory glutamatergic and GABAergic inhibitory neurotransmission balance might be responsible for impairment in cognitive function. In this study, we evaluated for the first time, the safety, tolerability, and efficacy of anodal prefrontal transcranial direct current stimulation (tDCS) combined with standard speech therapy to enhance language function in FXS patients. Methods: In total, 16 adult FXS patients were enrolled. Participants underwent 45 min of anodic tDCS combined with speech therapy for 5 weeks (3 times per week). Language function was evaluated using the Test for Reception of Grammar-Version 2 (TROG-2) and subtests of the Italian Language Examination (Esame del Linguaggio - II, EDL-II). Right and left dorsolateral prefrontal cortex transcranial magnetic stimulation and concurrent electroencephalography (TMS-EEG) recordings were collected at baseline and after the treatment to evaluate cortical reactivity and connectivity changes. Results: After 5 weeks of combined therapy, we observed a significant improvement in the writing (7.5%), reading (20.3%), repetition (13.3%), and TROG-2 (10.2%) tests. Parallelly with clinical change, TMS-EEG results showed a significant difference in TMS-evoked potential amplitude over the left frontal cortex after treatment (-0.73 ± 0.87 µV) compared to baseline (0.18 ± 0.84 µV). Conclusion: Our study provides novel evidence that left anodal prefrontal tDCS combined with standard speech therapy could be effective in enhancing language function in FXS patients, mainly by inducing a rebalance of the dysfunctional prefrontal cortical excitability.

13.
Trials ; 24(1): 823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129910

RESUMO

BACKGROUND: Since birth, during the exploration of the environment to interact with objects, we exploit both the motor and sensory components of the upper limb (UL). This ability to integrate sensory and motor information is often compromised following a stroke. However, to date, rehabilitation protocols are focused primarily on recovery of motor function through physical therapies. Therefore, we have planned a clinical trial to investigate the effect on functionality of UL after a sensorimotor transcranial stimulation (real vs sham) in add-on to robot-assisted therapy in the stroke population. METHODS: A randomised double-blind controlled trial design involving 32 patients with a single chronic stroke (onset > 180 days) was planned. Each patient will undergo 15 consecutive sessions (5 days for 3 weeks) of paired associative stimulation (PAS) coupled with UL robot-assisted therapy. PAS stimulation will be administered using a bifocal transcranial magnetic stimulator (TMS) on the posterior-parietal cortex and the primary motor area (real or sham) of the lesioned hemisphere. Clinical, kinematics and neurophysiological changes will be evaluated at the end of protocol and at 1-month follow-up and compared with baseline. The Fugl-Meyer assessment scale will be the primary outcome. Secondly, kinematic variables will be recorded during the box-and-block test and reaching tasks using video analysis and inertial sensors. Single pulse TMS and electroencephalography will be used to investigate the changes in local cortical reactivity and in the interconnected areas. DISCUSSION: The presented trial shall evaluate with a multimodal approach the effects of sensorimotor network stimulation applied before a robot-assisted therapy training on functional recovery of the upper extremity after stroke. The combination of neuromodulation and robot-assisted therapy can promote an increase of cortical plasticity of sensorimotor areas followed by a clinical benefit in the motor function of the upper limb. TRIAL REGISTRATION: ClinicalTrials.gov NCT05478434. Registered on 28 Jul 2022.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Extremidade Superior , Recuperação de Função Fisiológica , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Alzheimers Res Ther ; 15(1): 155, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715232

RESUMO

BACKGROUND: Gamma (γ) brain oscillations are dysregulated in Alzheimer's disease (AD) and can be modulated using transcranial alternating stimulation (tACS). In the present paper, we describe the rationale and design of a study assessing safety, feasibility, clinical and biological efficacy, and predictors of outcome of a home-based intervention consisting of γ-tACS over the precuneus. METHODS: In a first phase, 60 AD patients will be randomized into two arms: ARM1, 8-week precuneus γ-tACS (frequency: 40 Hz, intensity: 2 mA, duration: 5 60-min sessions/week); and ARM2, 8-week sham tACS (same parameters as the real γ-tACS, with the current being discontinued 5 s after the beginning of the stimulation). In a second phase, all participants will receive 8-week γ-tACS (same parameters as the real γ-tACS in the first phase). The study outcomes will be collected at several timepoints throughout the study duration and include information on safety and feasibility, neuropsychological assessment, blood sampling, electroencephalography, transcranial magnetic stimulation neurotransmitter measures, and magnetic resonance imaging or amyloid positron emission tomography. RESULTS: We expect that this intervention is safe and feasible and results in the improvement of cognition, entrainment of gamma oscillations, increased functional connectivity, reduction of pathological burden, and increased cholinergic transmission. CONCLUSIONS: If our expected results are achieved, home-based interventions using γ-tACS, either alone or in combination with other therapies, may become a reality for treating AD. TRIAL REGISTRATION: PNRR-POC-2022-12376021.


Assuntos
Doença de Alzheimer , Estimulação Transcraniana por Corrente Contínua , Humanos , Doença de Alzheimer/terapia , Projetos de Pesquisa , Estimulação Magnética Transcraniana , Proteínas Amiloidogênicas
15.
J Eat Disord ; 11(1): 127, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533058

RESUMO

BACKGROUND: Current psychological and pharmacological treatments for Anorexia Nervosa (AN) provide only moderate effective support, and there is an urgent need for research to improve therapies, especially in developing age. Non-invasive brain stimulation has suggested to have the potential to reducing AN symptomatology, via targeting brain alterations, such as hyperactivity of right prefrontal cortex (PFC). We suppose that transcranial direct current stimulation (tDCS) to the PFC may be effective in children and adolescents with AN. METHODS: We will conduct a randomized, double blind, add-on, placebo-controlled trial to investigate the efficacy of tDCS treatment on clinical improvement. We will also investigate brain mechanisms and biomarkers changes acting in AN after tDCS treatment. Eighty children or adolescent with AN (age range 10-18 years) will undergo treatment-as-usual including psychiatric, nutritional and psychological support, plus tDCS treatment (active or sham) to PFC (F3 anode/F4 cathode), for six weeks, delivered three times a week. Psychological, neurophysiological and physiological measures will be collected at baseline and at the end of treatment. Participants will be followed-up one, three, six months and one year after the end of treatment. Psychological measures will include parent- and self-report questionnaires on AN symptomatology and other psychopathological symptoms. Neurophysiological measures will include transcranial magnetic stimulation (TMS) with electroencephalography and paired pulse TMS and repetitive TMS to investigate changes in PFC connectivity, reactivity and plasticity after treatment. Physiological measures will include changes in the functioning of the endogenous stress response system, body mass index (BMI) and nutritional state. DISCUSSION: We expect that tDCS treatment to improve clinical outcome by reducing the symptoms of AN assessed as changes in Eating Disorder Risk composite score of the Eating Disorder Inventory-3. We also expect that at baseline there will be differences between the right and left hemisphere in some electrophysiological measures and that such differences will be reduced after tDCS treatment. Finally, we expect a reduction of endogenous stress response and an improvement in BMI and nutritional status after tDCS treatment. This project would provide scientific foundation for new treatment perspectives in AN in developmental age, as well as insight into brain mechanisms acting in AN and its recovery. Trial registration The study was registered at ClinicalTrials.gov (ID: NCT05674266) and ethical approval for the study was granted by the local research ethics committee (process number 763_OPBG_2014).

16.
Alzheimers Res Ther ; 15(1): 144, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649105

RESUMO

BACKGROUND: Despite the high sensitivity of cerebrospinal fluid (CSF) amyloid beta (Aß)42 to detect amyloid pathology, the Aß42/Aß40 ratio (amyR) better estimates amyloid load, with higher specificity for Alzheimer's disease (AD). However, whether Aß42 and amyR have different meanings and whether Aß40 represents more than an Aß42-corrective factor remain to be clarified. Our study aimed to compare the ability of Aß42 and amyR to detect AD pathology in terms of p-tau/Aß42 ratio and brain glucose metabolic patterns using fluorodeoxyglucose-positron emission tomography (FDG-PET). METHODS: CSF biomarkers were analyzed with EUROIMMUN ELISA. We included 163 patients showing pathological CSF Aß42 and normal p-tau (A + T - = 98) or pathological p-tau levels (A + T + = 65) and 36 control subjects (A - T -). A + T - patients were further stratified into those with normal (CSFAß42 + /amyR - = 46) and pathological amyR (CSFAß42 + /amyR + = 52). We used two distinct cut-offs to determine pathological values of p-tau/Aß42: (1) ≥ 0.086 and (2) ≥ 0.122. FDG-PET patterns were evaluated in a subsample of patients (n = 46) and compared to 24 controls. RESULTS: CSF Aß40 levels were the lowest in A - T - and in CSFAß42 + /amyR - , higher in CSFAß42 + /amyR + and highest in A + T + (F = 50.75; p < 0.001), resembling CSF levels of p-tau (F = 192; p < 0.001). We found a positive association between Aß40 and p-tau in A - T - (ß = 0.58; p < 0.001), CSFAß42 + /amyR - (ß = 0.47; p < 0.001), and CSFAß42 + /amyR + patients (ß = 0.48; p < 0.001) but not in A + T + . Investigating biomarker changes as a function of amyR, we observed a weak variation in CSF p-tau (+ 2 z-scores) and Aß40 (+ 0.8 z-scores) in the normal amyR range, becoming steeper over the pathological threshold of amyR (p-tau: + 5 z-scores, Aß40: + 4.5 z-score). CSFAß42 + /amyR + patients showed a significantly higher probability of having pathological p-tau/Aß42 than CSFAß42 + /amyR - (cut-off ≥ 0.086: OR 23.3; cut-off ≥ 0.122: OR 8.8), which however still showed pathological values of p-tau/Aß42 in some cases (cut-off ≥ 0.086: 35.7%; cut-off ≥ 0.122: 17.3%) unlike A - T - . Accordingly, we found reduced FDG metabolism in the temporoparietal regions of CSFAß42 + /amyR - compared to controls, and further reduction in frontal areas in CSFAß42 + /amyR + , like in A + T + . CONCLUSIONS: Pathological p-tau/Aß42 and FDG hypometabolism typical of AD can be found in patients with decreased CSF Aß42 levels alone. AmyR positivity, associated with higher Aß40 levels, is accompanied by higher CSF p-tau and widespread FDG hypometabolism.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Fluordesoxiglucose F18 , Proteínas Amiloidogênicas , Efeitos Psicossociais da Doença
17.
Neuroscientist ; : 10738584231189435, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37649430

RESUMO

The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.

18.
J Physiol ; 601(17): 3945-3960, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526070

RESUMO

The ventral premotor cortex (PMv) and primary motor cortex (M1) represent critical nodes of a parietofrontal network involved in grasping actions, such as power and precision grip. Here, we investigated how the functional PMv-M1 connectivity drives the dissociation between these two actions. We applied a PMv-M1 cortico-cortical paired associative stimulation (cc-PAS) protocol, stimulating M1 in both postero-anterior (PA) and antero-posterior (AP) directions, in order to induce long-term changes in the activity of different neuronal populations within M1. We evaluated the motor-evoked potential (MEP) amplitude, MEP latency and cortical silent period, in both PA and AP, during the isometric execution of precision and power grip, before and after the PMv-M1 cc-PAS. The repeated activation of the PMv-M1 cortico-cortical network with PA orientation over M1 did not change MEP amplitude or cortical silent period duration during both actions. In contrast, the PMv-M1 cc-PAS stimulation of M1 with an AP direction led to a specific modulation of precision grip motor drive. In particular, MEPs tested with AP stimulation showed a selective increase of corticospinal excitability during precision grip. These findings suggest that the more superficial M1 neuronal populations recruited by the PMv input are involved preferentially in the execution of precision grip actions. KEY POINTS: Ventral premotor cortex (PMv)-primary motor cortex (M1) cortico-cortical paired associative stimulation (cc-PAS) with different coil orientation targets dissociable neural populations. PMv-M1 cc-PAS with M1 antero-posterior coil orientation specifically modulates corticospinal excitability during precision grip. Superficial M1 populations are involved preferentially in the execution of precision grip. A plasticity induction protocol targeting the specific PMv-M1 subpopulation might have important translational value for the rehabilitation of hand function.


Assuntos
Córtex Motor , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Força da Mão/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios , Eletromiografia
19.
Brain Sci ; 13(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508969

RESUMO

The aim of this study was to shed light on the neural substrate of conceptual representations starting from the construct of higher-order convergence zones and trying to evaluate the unitary or non-unitary nature of this construct. We used the 'Thematic and Taxonomic Semantic (TTS) task' to investigate (a) the neural substrate of stimuli belonging to biological and artifact categories, (b) the format of stimuli presentation, i.e., verbal or pictorial, and (c) the relation between stimuli, i.e., categorial or contextual. We administered anodal transcranial direct current stimulation (tDCS) to different brain structures during the execution of the TTS task. Twenty healthy participants were enrolled and divided into two groups, one investigating the role of the anterior temporal lobes (ATL) and the other the temporo-parietal junctions (TPJ). Each participant underwent three sessions of stimulation to facilitate a control condition and to investigate the role of both hemispheres. Results showed that ATL stimulation influenced all conceptual representations in relation to the format of presentation (i.e., left-verbal and right-pictorial). Moreover, ATL stimulation modulated living categories and taxonomic relations specifically, whereas TPJ stimulation did not influence semantic task performances.

20.
Brain Sci ; 13(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509020

RESUMO

Determining the walking ability of post-stroke patients is crucial for the design of rehabilitation programs and the correct functional information to give to patients and their caregivers at their return home after a neurorehabilitation program. We aimed to assess the convergent validity of three different walking tests: the Functional Ambulation Category (FAC) test, the 10-m walking test (10MeWT) and the 6-minute walking test (6MWT). Eighty walking participants with stroke (34 F, age 64.54 ± 13.02 years) were classified according to the FAC score. Gait speed evaluation was performed with 10MeWT and 6MWT. The cut-off values for FAC and walking tests were calculated using a receiver-operating characteristic (ROC) curve. Area under the curve (AUC) and Youden's index were used to find the cut-off value. Statistical differences were found in all FAC subgroups with respect to walking speed on short and long distances, and in the Rivermead Mobility Index and Barthel Index. Mid-level precision (AUC > 0.7; p < 0.05) was detected in the walking speed with respect to FAC score (III vs. IV and IV vs. V). The confusion matrix and the accuracy analysis showed that the most sensitive test was the 10MeWT, with cut-off values of 0.59 m/s and 1.02 m/s. Walking speed cut-offs of 0.59 and 1.02 m/s were assessed with the 10MeWT and can be used in FAC classification in patients with subacute stroke between the subgroups able to walk with supervision and independently on uniform and non-uniform surfaces. Moreover, the overlapping walking speed registered with the two tests, the 10MeWT showed a better accuracy to drive FAC classification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...