Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EuroIntervention ; 20(8): e465-e466, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38629423
2.
Front Cardiovasc Med ; 8: 779807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970608

RESUMO

Background: Optical coherence tomography is a powerful modality to assess atherosclerotic lesions, but detecting lesions in high-resolution OCT is challenging and requires expert knowledge. Deep-learning algorithms can be used to automatically identify atherosclerotic lesions, facilitating identification of patients at risk. We trained a deep-learning algorithm (DeepAD) with co-registered, annotated histopathology to predict atherosclerotic lesions in optical coherence tomography (OCT). Methods: Two datasets were used for training DeepAD: (i) a histopathology data set from 7 autopsy cases with 62 OCT frames and co-registered histopathology for high quality manual annotation and (ii) a clinical data set from 51 patients with 222 OCT frames in which manual annotations were based on clinical expertise only. A U-net based deep convolutional neural network (CNN) ensemble was employed as an atherosclerotic lesion prediction algorithm. Results were analyzed using intersection over union (IOU) for segmentation. Results: DeepAD showed good performance regarding the prediction of atherosclerotic lesions, with a median IOU of 0.68 ± 0.18 for segmentation of atherosclerotic lesions. Detection of calcified lesions yielded an IOU = 0.34. When training the algorithm without histopathology-based annotations, a performance drop of >0.25 IOU was observed. The practical application of DeepAD was evaluated retrospectively in a clinical cohort (n = 11 cases), showing high sensitivity as well as specificity and similar performance when compared to manual expert analysis. Conclusion: Automated detection of atherosclerotic lesions in OCT is improved using a histopathology-based deep-learning algorithm, allowing accurate detection in the clinical setting. An automated decision-support tool based on DeepAD could help in risk prediction and guide interventional treatment decisions.

3.
Comput Methods Programs Biomed ; 191: 105387, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32109685

RESUMO

BACKGROUND AND OBJECTIVE: Performing patient-specific, pre-operative cochlea CT-based measurements could be helpful to positively affect the outcome of cochlear surgery in terms of intracochlear trauma and loss of residual hearing. Therefore, we propose a method to automatically segment and measure the human cochlea in clinical ultra-high-resolution (UHR) CT images, and investigate differences in cochlea size for personalized implant planning. METHODS: 123 temporal bone CT scans were acquired with two UHR-CT scanners, and used to develop and validate a deep learning-based system for automated cochlea segmentation and measurement. The segmentation algorithm is composed of two major steps (detection and pixel-wise classification) in cascade, and aims at combining the results of a multi-scale computer-aided detection scheme with a U-Net-like architecture for pixelwise classification. The segmentation results were used as an input to the measurement algorithm, which provides automatic cochlear measurements (volume, basal diameter, and cochlear duct length (CDL)) through the combined use of convolutional neural networks and thinning algorithms. Automatic segmentation was validated against manual annotation, by the means of Dice similarity, Boundary-F1 (BF) score, and maximum and average Hausdorff distances, while measurement errors were calculated between the automatic results and the corresponding manually obtained ground truth on a per-patient basis. Finally, the developed system was used to investigate the differences in cochlea size within our patient cohort, to relate the measurement errors to the actual variation in cochlear size across different patients. RESULTS: Automatic segmentation resulted in a Dice of 0.90 ± 0.03, BF score of 0.95 ± 0.03, and maximum and average Hausdorff distance of 3.05 ± 0.39 and 0.32 ± 0.07 against manual annotation. Automatic cochlear measurements resulted in errors of 8.4% (volume), 5.5% (CDL), 7.8% (basal diameter). The cochlea size varied broadly, ranging between 0.10 and 0.28 ml (volume), 1.3 and 2.5 mm (basal diameter), and 27.7 and 40.1 mm (CDL). CONCLUSIONS: The proposed algorithm could successfully segment and analyze the cochlea on UHR-CT images, resulting in accurate measurements of cochlear anatomy. Given the wide variation in cochlear size found in our patient cohort, it may find application as a pre-operative tool in cochlear implant surgery, potentially helping elaborate personalized treatment strategies based on patient-specific, image-based anatomical measurements.


Assuntos
Cóclea/cirurgia , Implante Coclear , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...