Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(18): 186401, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759183

RESUMO

The impact of proximity-induced spin-orbit and exchange coupling on the correlated phase diagram of rhombohedral trilayer graphene (RTG) is investigated theoretically. By employing ab initio-fitted effective models of RTG encapsulated by transition metal dichalcogenides (spin-orbit proximity effect) and ferromagnetic Cr_{2}Ge_{2}Te_{6} (exchange proximity effect), we incorporate the Coulomb interactions within the random-phase approximation to explore potential correlated phases at different displacement fields and doping. We find a rich spectrum of spin-valley resolved Stoner and intervalley coherence instabilities induced by the spin-orbit proximity effects, such as the emergence of a spin-valley-coherent phase due to the presence of valley-Zeeman coupling. Similarly, proximity exchange removes the phase degeneracies by biasing the spin direction, enabling a magnetocorrelation effect-strong sensitivity of the correlated phases to the relative magnetization orientations (parallel or antiparallel) of the encapsulating ferromagnetic layers.

2.
Nat Nanotechnol ; 17(1): 39-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34795437

RESUMO

Transport is non-reciprocal when not only the sign, but also the absolute value of the current depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, for example, by an interplay of spin-orbit coupling and magnetic field. Hitherto, observation of nonreciprocity was tied to resistivity, and dissipationless non-reciprocal circuit elements were elusive. Here we engineer fully superconducting non-reciprocal devices based on highly transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link the non-reciprocal supercurrent to an asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient. A semiquantitative model explains well the main features of our experimental data. Non-reciprocal Josephson junctions have the potential to become for superconducting circuits what pn junctions are for traditional electronics, enabling new non-dissipative circuit elements.

3.
Phys Rev Lett ; 125(8): 087001, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909806

RESUMO

Employing analytical methods and quantum transport simulations we investigate the relaxation of quasiparticle spins in graphene proximitized by an s-wave superconductor in the presence of resonant magnetic and spin-orbit active impurities. Off resonance, the relaxation increases with decreasing temperature when electrons scatter off magnetic impurities-the Hebel-Slichter effect-and decreases when impurities have spin-orbit coupling. This distinct temperature dependence (not present in the normal state) uniquely discriminates between the two scattering mechanisms. However, we show that the Hebel-Slichter picture breaks down at resonances. The emergence of Yu-Shiba-Rusinov bound states within the superconducting gap redistributes the spectral weight away from magnetic resonances. The result is opposite to the Hebel-Slichter expectation: the spin relaxation decreases with decreasing temperature. Our findings hold for generic s-wave superconductors with resonant magnetic impurities, but also, as we show, for resonant magnetic Josephson junctions.

4.
Phys Rev Lett ; 124(13): 136403, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302179

RESUMO

We investigate an effective model of proximity modified graphene (or symmetrylike materials) with broken time-reversal symmetry. We predict the appearance of quantum anomalous Hall phases by computing bulk band gap and Chern numbers for benchmark combinations of system parameters. Allowing for staggered exchange field enables quantum anomalous Hall effect in flat graphene with Chern number C=1. We explicitly show edge states in zigzag and armchair nanoribbons and explore their localization behavior. Remarkably, the combination of staggered intrinsic spin-orbit and uniform exchange coupling gives topologically protected (unlike in time-reversal systems) pseudohelical states, whose spin is opposite in opposite zigzag edges. Rotating the magnetization from out of plane to in plane makes the system trivial, allowing us to control topological phase transitions. We also propose, using density functional theory, a material platform-graphene on Ising antiferromagnet MnPSe_{3}-to realize staggered exchange (pseudospin Zeeman) coupling.

5.
Phys Rev Lett ; 124(12): 126804, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281865

RESUMO

Magnetotransport through cylindrical topological insulator (TI) nanowires is governed by the interplay between quantum confinement and geometric (Aharonov-Bohm and Berry) phases. Here, we argue that the much broader class of TI nanowires with varying radius-for which a homogeneous coaxial magnetic field induces a varying Aharonov-Bohm flux that gives rise to a nontrivial masslike potential along the wire-is accessible by studying its simplest member, a TI nanocone. Such nanocones allow us to observe intriguing mesoscopic transport phenomena: While the conductance in a perpendicular magnetic field is quantized due to higher-order topological hinge states, it shows resonant transmission through Dirac Landau levels in a coaxial magnetic field. Furthermore, it may act as a quantum magnetic bottle, confining surface Dirac electrons and leading to a largely interaction-dominated regime of Coulomb blockade type. We show numerically that the above-mentioned effects occur for experimentally accessible values of system size and magnetic field, suggesting that TI nanocone junctions may serve as building blocks for Dirac electron optics setups.

6.
Phys Rev Lett ; 121(13): 136801, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312090

RESUMO

We report the experimental observation of sublattice-resolved resonant scattering in bilayer graphene by performing simultaneous cryogenic atomic hydrogen doping and electron transport measurements in an ultrahigh vacuum. This allows us to monitor the hydrogen adsorption on the different sublattices of bilayer graphene without atomic-scale microscopy. Specifically, we detect two distinct resonant scattering peaks in the gate-dependent resistance, which evolve as a function of the atomic hydrogen dosage. Theoretical calculations show that one of the peaks originates from resonant scattering by hydrogen adatoms on the α sublattice (dimer site) while the other originates from hydrogen adatoms on the ß sublattice (nondimer site), thereby enabling a method for characterizing the relative sublattice occupancy via transport measurements. Utilizing this new capability, we investigate the adsorption and thermal desorption of hydrogen adatoms via controlled annealing and conclude that hydrogen adsorption on the ß sublattice is energetically favored. Through site-selective desorption from the α sublattice, we realize hydrogen doping with adatoms primarily on a single sublattice, which is highly desired for generating ferromagnetism.

7.
Phys Rev Lett ; 120(15): 156402, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756852

RESUMO

We investigate topological properties of models that describe graphene on realistic substrates which induce proximity spin-orbit coupling in graphene. A Z_{2} phase diagram is calculated for the parameter space of (generally different) intrinsic spin-orbit coupling on the two graphene sublattices, in the presence of Rashba coupling. The most fascinating case is that of staggered intrinsic spin-orbit coupling which, despite being topologically trivial, Z_{2}=0, does exhibit edge states protected by time-reversal symmetry for zigzag ribbons as wide as micrometers. We call these states pseudohelical as their helicity is locked to the sublattice. The spin character and robustness of the pseudohelical modes is best exhibited on a finite flake, which shows that the edge states have zero g factor, carry a pure spin current in the cross section of the flake, and exhibit spin-flip reflectionless tunneling at the armchair edges.

8.
Phys Rev Lett ; 115(19): 196601, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588403

RESUMO

We propose that the observed spin relaxation in bilayer graphene is due to resonant scattering by magnetic impurities. We analyze a resonant scattering model due to adatoms on both dimer and nondimer sites, finding that only the former give narrow resonances at the charge neutrality point. Opposite to single-layer graphene, the measured spin-relaxation rate in the graphene bilayer increases with carrier density. Although it has been commonly argued that a different mechanism must be at play for the two structures, our model explains this behavior rather naturally in terms of different broadening scales for the same underlying resonant processes. Not only do our results-using robust and first-principles inspired parameters-agree with experiment, they also predict an experimentally testable sharp decrease of the spin-relaxation rate at high carrier densities.

9.
Phys Rev Lett ; 112(11): 116602, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702397

RESUMO

We propose that the observed small (100 ps) spin relaxation time in graphene is due to resonant scattering by local magnetic moments. At resonances, magnetic moments behave as spin hot spots: the spin-flip scattering rates are as large as the spin-conserving ones, as long as the exchange interaction is greater than the resonance width. Smearing of the resonance peaks by the presence of electron-hole puddles gives quantitative agreement with experiment, for about 1 ppm of local moments. Although magnetic moments can come from a variety of sources, we specifically consider hydrogen adatoms, which are also resonant scatterers. The same mechanism would also work in the presence of a strong local spin-orbit interaction, but this would require heavy adatoms on graphene or a much greater coverage density of light adatoms. To make our mechanism more transparent, we also introduce toy atomic chain models for resonant scattering of electrons in the presence of a local magnetic moment and Rashba spin-orbit interaction.

10.
Phys Rev Lett ; 110(24): 246602, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165949

RESUMO

First-principles calculations of the spin-orbit coupling in graphene with hydrogen adatoms in dense and dilute limits are presented. The chemisorbed hydrogen induces a giant local enhancement of spin-orbit coupling due to sp(3) hybridization which depends strongly on the local lattice distortion. Guided by the reduced symmetry and the local structure of the induced dipole moments, we use group theory to propose realistic minimal Hamiltonians that reproduce the relevant spin-orbit effects for both single-side semihydrogenated graphene (graphone) and for a single hydrogen adatom in a large supercell. The principal linear spin-orbit band splittings are driven by the breaking of the local pseudospin inversion symmetry and the emergence of spin flips on the same sublattice.

11.
Phys Rev Lett ; 107(17): 176604, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107552

RESUMO

The spin-valve complex magnetoimpedance of symmetric ferromagnet-normal-metal-ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance-the real part difference of the impedances of the parallel and antiparallel magnetization configurations-exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...