Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36146607

RESUMO

This preclinical study in the gnotobiotic (Gn) pig model of human rotavirus (HRV) infection and disease evaluates the effect of probiotic Lactobacillus rhamnosus GG (LGG) as a mucosal adjuvant on the immunogenicity and cross-protective efficacy of the Lanzhou live oral trivalent (G2, G3, G4) vaccine (TLV, aka LLR3). Gn pigs were immunized with three doses of TLV with or without concurrent administration of nine doses of LGG around the time of the first dose of the TLV vaccination, and were challenged orally with the virulent heterotypic Wa G1P[8] HRV. Three doses of TLV were highly immunogenic and conferred partial protection against the heterotypic HRV infection. LGG significantly enhanced the intestinal and systemic immune responses and improved the effectiveness of protection against the heterotypic HRV challenge-induced diarrhea and virus shedding. In conclusion, we demonstrated the immune-stimulating effects of probiotic LGG as a vaccine adjuvant and generated detailed knowledge regarding the cross-reactive and type-specific antibody and effector B and T cell immune responses induced by the TLV. Due to the low cost, ease of distribution and administration, and favorable safety profiles, LGG as an adjuvant has the potential to play a critical role in improving rotavirus vaccine efficacy and making the vaccines more cost-effective.

2.
J Dent ; 123: 104203, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724941

RESUMO

OBJECTIVE: Using a battery of preclinical tests to support development of a light-based treatment for COVID-19, establish a range of 425 nm light doses that are non-hazardous to the tissues of the oral cavity and assess whether a 425 nm light dose in this non-hazardous range can inactivate SARS-CoV-2 in artificial saliva. METHODS: The potential hazards to oral tissues associated with a range of acute 425 nm light doses were assessed using a battery of four preclinical tests: (1) cytotoxicity, using well-differentiated human large airway and buccal epithelial models; (2) toxicity to commensal oral bacteria, using a panel of model organisms; (3) light-induced histopathological changes, using ex vivo porcine esophageal tissue, and (4) thermal damage, by dosing the oropharynx of intact porcine head specimens. Then, 425 nm light doses established as non-hazardous using these tests were evaluated for their potential to inactivate SARS-CoV-2 in artificial saliva. RESULTS: A dose range was established at which 425 nm light is not cytotoxic in well-differentiated human large airway or buccal epithelial models, is not cytotoxic to a panel of commensal oral bacteria, does not induce histopathological damage in ex vivo porcine esophageal tissue, and does not induce thermal damage to the oropharynx of intact porcine head specimens. Using these tests, no hazards were observed for 425 nm light doses less than 63 J/cm2 delivered at irradiance less than 200 mW/cm2. A non-hazardous 425 nm light dose in this range (30 J/cm2 at 50 mW/cm2) was shown to inactivate SARS-CoV-2 in vitro in artificial saliva. CONCLUSION: Preclinical hazard assessments and SARS-CoV-2 inactivation efficacy testing were combined to guide the development of a 425 nm light-based treatment for COVID-19. CLINICAL SIGNIFICANCE: The process used here to evaluate the potential hazards associated with 425 nm acute light dosing of the oral cavity to treat COVID-19 can be extended to other wavelengths, anatomical targets, and therapeutic applications to accelerate the development of novel photomedicine treatments.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Boca , Orofaringe , Saliva , Saliva Artificial , Suínos
3.
Clin Transl Sci ; 15(5): 1291-1303, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35137532

RESUMO

The RD-X19 is an investigational, handheld medical device precisely engineered to emit blue light through the oral cavity to target the oropharynx and surrounding tissues. At doses shown to be noncytotoxic in an in vitro three-dimensional human epithelial tissue model, the monochromatic visible light delivered by RD-X19 results in light-initiated expression of immune stimulating cytokines IL-1α and IL-1ß, with corresponding inhibition of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) replication. A single exposure of 425 nm blue light at 60 J/cm2 led to greater than 99% reductions against all SARS-CoV-2 strains tested in vitro, including the more transmissible (Alpha) and immune evasive (Beta) variants. These preclinical findings along with other studies led to a randomized, double-blind, sham-controlled early feasibility study using the investigational device as a treatment for outpatients with mild to moderate coronavirus disease 2019 (COVID-19). The study enrolled 31 subjects with a positive SARS-CoV-2 antigen test and at least two moderate COVID-19 signs and symptoms at baseline. Subjects were randomized 2:1 (RD-X19: sham) and treated twice daily for 4 days. Efficacy outcome measures included assessments of SARS-CoV-2 saliva viral load and clinical assessments of COVID-19. There were no local application site reactions and no device-related adverse events. At the end of the study (day 8), the mean change in log10 viral load was -3.29 for RD-X19 and -1.81 for sham, demonstrating a treatment benefit of -1.48 logs (95% confidence internal, -2.88 to -0.071, nominal p = 0.040). Among the clinical outcome measures, differences between RD-X19 and sham were also observed, with a 57-h reduction of median time to sustained resolution of COVID-19 signs and symptoms (log rank test, nominal p = 0.044).


Assuntos
COVID-19 , Estudos de Viabilidade , Humanos , Pacientes Ambulatoriais , SARS-CoV-2 , Resultado do Tratamento , Carga Viral
4.
Sci Rep ; 11(1): 20595, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663881

RESUMO

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Luz , SARS-CoV-2 , Traqueia/efeitos da radiação , Replicação Viral/efeitos da radiação , Adulto , Animais , Antivirais/farmacologia , Brônquios , Calibragem , Sistema Livre de Células , Chlorocebus aethiops , Epitélio/patologia , Feminino , Humanos , Mucosa Respiratória/efeitos da radiação , Traqueia/virologia , Células Vero
5.
BMC Bioinformatics ; 22(1): 287, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051754

RESUMO

BACKGROUND: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. RESULTS: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. CONCLUSIONS: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.


Assuntos
Algoritmos , Modelos Biológicos , Genômica , Proteínas
6.
mBio ; 9(3)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789360

RESUMO

Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.


Assuntos
Antígenos Virais/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Caliciviridae/imunologia , Norovirus/imunologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Caliciviridae/química , Caliciviridae/classificação , Caliciviridae/genética , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Quirópteros/virologia , Humanos , Norovirus/química , Norovirus/classificação , Norovirus/genética , Filogenia , Domínios Proteicos
7.
Virology ; 517: 98-107, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277291

RESUMO

We recently established a mouse model (288-330+/+) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 106 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 103 and 105 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.


Assuntos
Evolução Biológica , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Animais , Infecções por Coronavirus/patologia , Pulmão/virologia , Camundongos , Organismos Geneticamente Modificados
8.
J Infect Dis ; 216(10): 1227-1234, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28973354

RESUMO

Background: Human norovirus is a significant public health burden, with >30 genotypes causing endemic levels of disease and strains from the GII.4 genotype causing serial pandemics as the virus evolves new ligand binding and antigenicity features. During 2014-2015, genotype GII.17 cluster IIIb strains emerged as the leading cause of norovirus infection in select global locations. Comparison of capsid sequences indicates that GII.17 is evolving at previously defined GII.4 antibody epitopes. Methods: Antigenicity of virus-like particles (VLPs) representative of clusters I, II, and IIIb GII.17 strains were compared by a surrogate neutralization assay based on antibody blockade of ligand binding. Results: Sera from mice immunized with a single GII.17 VLP identified antigenic shifts between each cluster of GII.17 strains. Ligand binding of GII.17 cluster IIIb VLP was blocked only by antisera from mice immunized with cluster IIIb VLPs. Exchange of residues 393-396 from GII.17.2015 into GII.17.1978 ablated ligand binding and altered antigenicity, defining an important varying epitope in GII.17. Conclusions: The capsid sequence changes in GII.17 strains result in loss of blockade antibody binding, indicating that viral evolution, specifically at residues 393-396, may have contributed to the emergence of cluster IIIb strains and the persistence of GII.17 in human populations.


Assuntos
Anticorpos Bloqueadores/imunologia , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Norovirus/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anticorpos Bloqueadores/química , Anticorpos Antivirais/química , Variação Antigênica , Infecções por Caliciviridae/epidemiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Variação Genética , Cobaias , Humanos , Imunização , Camundongos , Modelos Moleculares , Norovirus/classificação , Norovirus/genética , Norovirus/ultraestrutura , Ligação Proteica , Conformação Proteica , Coelhos
9.
mBio ; 8(4)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830941

RESUMO

While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Fases de Leitura Aberta , Replicação Viral/genética , Animais , Linhagem Celular , Células Cultivadas , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Interferons/genética , Interferons/metabolismo , Camundongos , Mutação , NF-kappa B/metabolismo , Genética Reversa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...