Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spinal Cord Ser Cases ; 10(1): 56, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098854

RESUMO

INTRODUCTION: Spinal cord injury (SCI) causes damage to neurons and results in motor and sensory dysfunction. Intermittent theta burst stimulation (iTBS) has been used to induce neuronal and synaptic plasticity by applying a magnetic field in the brain. The plasticity induced in the cortex has an imperative role in the recovery of motor and sensory functioning. However, the effect of iTBS in complete SCI patients is still elusive. CASE PRESENTATION: We report here the case of a 27-year-old female who sustained an L1 complete spinal cord injury (SCI) with an ASIA score of A. The patient lost all the sensory and motor functions below the level of injury. Intermittent theta burst stimulation (iTBS) was administered at 80% of the resting motor threshold over the M1 motor cortex, along with intensive rehabilitation training to promote sensorimotor function. DISCUSSION: There was a partial recovery in functional, electrophysiological, and neurological parameters. The case report also demonstrates the safety and efficacy of iTBS in complete SCI patients. No adverse event has been observed in the patient during intervention sessions.


Assuntos
Traumatismos da Medula Espinal , Estimulação Magnética Transcraniana , Humanos , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Feminino , Adulto , Estimulação Magnética Transcraniana/métodos , Recuperação de Função Fisiológica/fisiologia , Córtex Motor , Ritmo Teta/fisiologia
2.
MethodsX ; 13: 102826, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39049927

RESUMO

Gait impairment and neurogenic bladder are co-existing common findings in incomplete spinal cord injury (iSCI). Repetitive transcranial magnetic stimulation (rTMS), evident to be a promising strategy adjunct to physical rehabilitation to regain normal ambulation in SCI. However, there is a need to evaluate the role of Intermittent theta burst stimulation (iTBS), a type of patterned rTMS in restoring gait and neurogenic bladder in SCI patients. The aim of the present study is to quantify the effect of iTBS on spatiotemporal, kinetic, and kinematic parameters of gait and neurogenic bladder dyssynergia in iSCI. After maturing all exclusion and inclusion criteria, thirty iSCI patients will be randomly divided into three groups: Group-A (sham), Group-B (active rTMS) and Group-C (active iTBS). Each group will receive stimulation adjunct to physical rehabilitation for 2 weeks. All patients will undergo gait analysis, as well assessment of bladder, electrophysiological, neurological, functional, and psychosocial parameters. All parameters will be assessed at baseline and 6th week (1st follow-up). Parameters except urodynamics and gait analysis will also be assessed after the end of the 2 weeks of the intervention (post-intervention) and at 12th week (2nd follow-up). Appropriate statistical analysis will be done using various parametric and non-parametric tests based on results.

3.
Neurosci Lett ; 836: 137878, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38862088

RESUMO

Alzheimer's disease (AD) is an approaching, progressive public health crisis which presently lacks an effective treatment. Various non-invasive novel therapies like repetitive transcranial magnetic stimulation have shown potential to improve cognitive performance in AD patients. In the present study, the effect of extremely low intensity magnetic field (MF) stimulation on neurogenesis and cortical electrical activity was explored. Adult Wistar rats were divided into Sham, AD and AD + MF groups. Streptozotocin (STZ) was injected intracerebroventricularly, at a dose of 3 mg/kg body weight for developing AD model. The AD rats were then exposed to MF (17.96 µT) from 8th day of STZ treatment until 15th day, followed by cognitive assessments and electrocortical recording. In brain tissue samples, cresyl violet staining and BrdU immunohistochemistry were done. MF exposure, improved passive avoidance and recognition memory, attenuated neuronal degeneration and enhanced cell proliferation (BrdU positive cells) in comparison to AD rats. It also significantly restores delta wave power from frontal lobe. Our results suggest that early-stage MF exposure could be an asset for AD research and open new avenues in slowing down the progression of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Ratos Wistar , Estreptozocina , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/fisiopatologia , Estreptozocina/toxicidade , Estreptozocina/administração & dosagem , Masculino , Ratos , Neurogênese/efeitos da radiação , Magnetoterapia/métodos , Encéfalo , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA