Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38927678

RESUMO

The Old-World quails, Coturnix coturnix (common quail) and Coturnix japonica (Japanese quail), are morphologically similar yet occupy distinct geographic ranges. This study aimed to elucidate their evolutionary trajectory and ancestral distribution patterns through a thorough analysis of their mitochondrial genomes. Mitogenomic analysis revealed high structural conservation, identical translational mechanisms, and similar evolutionary pressures in both species. Selection analysis revealed significant evidence of positive selection across the Coturnix lineage for the nad4 gene tree owing to environmental changes and acclimatization requirements during its evolutionary history. Divergence time estimations imply that diversification among Coturnix species occurred in the mid-Miocene (13.89 Ma), and their current distributions were primarily shaped by dispersal rather than global vicariance events. Phylogenetic analysis indicates a close relationship between C. coturnix and C. japonica, with divergence estimated at 2.25 Ma during the Pleistocene epoch. Ancestral range reconstructions indicate that the ancestors of the Coturnix clade were distributed over the Oriental region. C. coturnix subsequently dispersed to Eurasia and Africa, and C. japonica to eastern Asia. We hypothesize that the current geographic distributions of C. coturnix and C. japonica result from their unique dispersal strategies, developed to evade interspecific territoriality and influenced by the Tibetan Plateau's geographic constraints. This study advances our understanding of the biogeographic and evolutionary processes leading to the diversification of C. coturnix and C. japonica, laying important groundwork for further research on this genus.


Assuntos
Coturnix , Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Coturnix/genética , Seleção Genética , Filogeografia
3.
PLoS One ; 16(4): e0241098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33836001

RESUMO

Psittacula cyanocephala is an endemic parakeet from the Indian sub-continent that is widespread in the illegal bird trade. Previous studies on Psittacula parakeets have highlighted taxonomic ambiguities, warranting studies to resolve the issues. Since the mitochondrial genome provides useful information concerning the species evolution and phylogenetics, we sequenced the complete mitogenome of P. cyanocephala using NGS, validated 38.86% of the mitogenome using Sanger Sequencing and compared it with other available whole mitogenomes of Psittacula. The complete mitogenome of the species was 16814 bp in length with 54.08% AT composition. P. cyanocephala mitogenome comprises of 13 protein-coding genes, 2 rRNAs and 22 tRNAs. P. cyanocephala mitogenome organization was consistent with other Psittacula mitogenomes. Comparative codon usage analysis indicated the role of natural selection on Psittacula mitogenomes. Strong purifying selection pressure was observed maximum on nad1 and nad4l genes. The mitochondrial control region of all Psittacula species displayed the ancestral avian CR gene order. Phylogenetic analyses revealed the Psittacula genus as paraphyletic nature, containing at least 4 groups of species within the same genus, suggesting its taxonomic reconsideration. Our results provide useful information for developing forensic tests to control the illegal trade of the species and scientific basis for phylogenetic revision of the genus Psittacula.


Assuntos
Genoma Mitocondrial/genética , Mitocôndrias/genética , Mitógenos/genética , Psittacula/genética , Animais , Uso do Códon/genética , Ordem dos Genes/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Seleção Genética/genética
4.
Sci Rep ; 10(1): 16202, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004841

RESUMO

Mitochondrial genome provides useful information about species concerning its evolution and phylogenetics. We have taken the advantage of high throughput next-generation sequencing technique to sequence the complete mitogenome of Yellow-billed babbler (Turdoides affinis), a species endemic to Peninsular India and Sri Lanka. Both, reference-based and de-novo assemblies of mitogenome were performed and observed that de-novo assembled mitogenome was most appropriate. The complete mitogenome of yellow-billed babbler (assembled de-novo) was 17,672 bp in length with 53.2% AT composition. Thirteen protein-coding genes along with two rRNAs and 22 tRNAs were detected. The arrangement pattern of these genes was found conserved among Leiothrichidae family mitogenomes. Duplicated control regions were found in the newly sequenced mitogenome. Downstream bioinformatics analysis revealed the effect of translational efficiency and purifying selection pressure over thirteen protein-coding genes in yellow-billed babbler mitogenome. Ka/Ks analysis indicated the highest synonymous substitution rate in the nad6 gene. Evolutionary analysis revealed the conserved nature of all the protein-coding genes across Leiothrichidae family mitogenomes. Our limited phylogeny results placed T. affinis in a separate group, a sister group of Garrulax. Overall, our results provide a useful information for future studies on the evolutionary and adaptive mechanisms of birds belong to the Leiothrichidae family.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial , NADH Desidrogenase/metabolismo , Passeriformes/genética , Filogenia , Biossíntese de Proteínas , Animais , DNA Mitocondrial/análise , NADH Desidrogenase/genética , Passeriformes/classificação , Passeriformes/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...