Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(9): 2287-2305, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694476

RESUMO

Coumarins, methylene blue derivatives, as well as related functional organic dyes have become prevalent tools in life sciences and biomedicine. Their intense blue fluorescence emission makes them ideal agents for a range of applications, yet an unwanted facet of the interesting biological properties of such probes presents a simultaneous environmental threat due to inherent toxicity and persistence in aqueous media. As such, significant research efforts now ought to focus on their removal from the environment, and the sustainable trapping onto widely available, water dispersible and processable adsorbent structures such as graphene oxides could be advantageous. Additionally, flat and aromatic bis(thiosemicarbazones) (BTSCs) have shown biocompatibility and chemotherapeutic potential, as well as intrinsic fluorescence, hence traceability in the environment and in living systems. A new palette of graphene oxide-based hierarchical supramolecular materials incorporating BTSCs were prepared, characterised, and reported hereby. We report on the supramolecular entrapping of several flat, aromatic fluorogenic molecules onto graphene oxide on basis of non-covalent interactions, by virtue of their structural features with potential to form aromatic stacks and H-bonds. The evaluations of the binding interactions in solution by between organic dyes (methylene blue and functional coumarins) and new graphene oxide-anchored Zn(ii) derivatised bis(thiosemicarbazones) nanohybrids were carried out by UV-Vis and fluorescence spectroscopies.

2.
Dalton Trans ; 53(15): 6818-6829, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546210

RESUMO

Three new d8- and d10-configuration based 1,1'-bis-(diphenylphosphino)ferrocene (dppf) appended thiosquarates complexes with general composition [M(mtsq)2dppf] (M = Ni2+ (NiL2); Zn2+ (ZnL2) and Cd2+ (CdL2)) (mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized spectroscopically as well as in case of NiL2 by single crystal X-ray diffraction technique. The single crystal X-ray analysis reveals square planar geometry around Ni(II) in NiL2, where Ni(II) coordinates with two sulfur centres of two mtsq ligands in monodentate fashion and two phosphorus of a dppf ligand in chelating mode. The supramolecular architecture of NiL2 is sustained by intermolecular C-H⋯O interactions to form one-dimensional chain. Further, the application of these newly synthesized complexes as sensitizers and co-sensitizers/co-absorbents with ruthenium based N719 sensitizer in dye-sensitized solar cells (DSSCs) have been explored. The DSSC set-up based on NiL2 offers best photovoltaic performance with photovoltaic efficiency (η) 5.12%, short-circuit current (Jsc) 11.60 mA cm-2, open circuit potential (Voc) 0.690 V and incident photon to current conversion efficiency (IPCE) 63%. In co-sensitized DSSC set-up, ZnL2 along with state-of-the-art N719 dye displays best photovoltaic performance with η 6.65%, Jsc 14.47 mA cm-2, Voc 0.729 V and IPCE 69%, thereby showing an improvement by 15.25% in photovoltaic efficiency in comparison to the photovoltaic efficiency of N719 sensitized DSSC set-up. Variation in co-sensitization behaviour have been ascribed to the differences in the excited state energy level of co-sensitizers. The ZnL2 and CdL2 have a higher energy level position than N719 dye, allowing efficient electron transfer to N719 during light irradiation, while excited state of NiL2 is lower than N719 dye, preventing photoexcited electron transfer to N719, resulting in its lowest overall efficiency among the three co-sensitized DSSC setups.

3.
Dalton Trans ; 53(13): 5881-5899, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446046

RESUMO

The application of Mg[Ph4Pn] and Li·K[Ph4Pn] in transmetalation reactions to a range of Rh(I) precursors led to the formation of "half-baguette" anti-[RhI(L)n]2[µ:η5:η5Ph4Pn] (L = 1,5-cyclooctadiene, norbornadiene, ethylene; n = 1, 2) and syn-[RhI(CO)2]2[µ:η5:η5Ph4Pn] complexes as well as the related iridium complex anti-[IrI(COD)]2[µ:η5:η5Ph4Pn]. With CO exclusive syn metalation was obtained even when using mono-nuclear Rh(I) precursors, indicating an electronic preference for syn metalation. DFT analysis showed this to be the result of π overlap between the adjacent M(CO)2 units which overcompensates for dz2 repulsion of the metals, an effect which can be overridden by steric clash of the auxiliary ligands to yield anti-configuration as seen in the larger olefin complexes. syn-[RhI(CO)2]2[µ:η5:η5Ph4Pn] is a rare example of a twinned organometallic where the two metals are held flexibly in close proximity, but the two d8 Rh(I) centres did not show signs of M-M bonding interactions or exhibit Lewis basic behaviour as in some related mono-nuclear Cp complexes due to the acceptor properties of the ligands. The ligand substitution chemistry of syn-[RhI(CO)2]2[µ:η5:η5Ph4Pn] was investigated with a series of electronically and sterically diverse donor ligands (P(OPh)3, P(OMe)3, PPh3, PMe3, dppe) yielding new mono- and bis-substituted complexes, with E-syn-[RhI(CO)(P{OR})3]2[µ:η5:η5Ph4Pn] (R = Me, Ph) characterised by XRD.

4.
Angew Chem Int Ed Engl ; 63(20): e202403474, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38506404

RESUMO

Per- and polyfluoroalkyl substances (PFAS) pose a rapidly increasing global problem as their widespread use and high stability lead worldwide to water contamination, with significant detrimental health effects.[1] Supramolecular chemistry has been invoked to develop materials geared towards the specific capture of PFAS from water,[2] to reduce the concentration below advisory safety limits (e.g., 70 ng/L for the sum of perfluorooctane sulfonic acid, PFOS and perfluorooctanoic acid, PFOA). Scale-up and use in natural waters with high PFAS concentrations has hitherto posed a problem. Here we report a new type of host-guest interaction between deca-ammonium-functionalized pillar[5]arenes (DAF-P5s) and perfluoroalkyl acids. DAF-P5 complexes show an unprecedented 1 : 10 stoichiometry, as confirmed by isothermal calorimetry and X-ray crystallographic studies, and high binding constants (up to 106 M-1) to various polyfluoroalkyl acids. In addition, non-fluorinated acids do not hamper this process significantly. Immobilization of DAF-P5s allows a simple single-time filtration of PFAS-contaminated water to reduce the PFOS/PFOA concentration 106 times to 15-50 ng/L level. The effective and fast (<5 min) orthogonal binding to organic molecules without involvement of fluorinated supramolecular hosts, high breakthrough capacity (90 mg/g), and robust performance (>10 regeneration cycles without decrease in performance) set a new benchmark in PFAS-absorbing materials.

5.
ACS Appl Polym Mater ; 6(3): 1622-1632, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357438

RESUMO

A series of copolymers have been prepared via thiol-ene polymerization of bioderived α,ω-unsaturated diene monomers with dithiols toward application as solid polymer electrolytes (SPEs) for Li+-ion conduction. Amorphous polyesters and polyethers with low Tg's (-31 to -11 °C) were first prepared from xylose-based monomers (with varying lengths of fatty acid moiety) and 2,2'-(ethylenedioxy)diethanethiol (EDT). Cross-linking by incorporation of a trifunctional monomer also produced a series of SPEs with ionic conductivities up to 2.2 × 10-5 S cm-1 at 60 °C and electrochemical stability up to 5.08 V, a significant improvement over previous xylose-derived materials. Furthermore, a series of copolymers bearing nucleoside moieties were prepared to exploit the complementary base-pairing interaction of nucleobases. Flexible, transparent, and reprocessable SPE films were thus prepared with improved ionic conductivity (up to 1.5 × 10-4 S cm-1 at 60 °C), hydrolytic degradability, and potential self-healing capabilities.

6.
Inorg Chem ; 63(1): 27-38, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38118120

RESUMO

ε-Caprolactone (ε-CL) adducts of cationic, amine tris(phenolate)-supported niobium(V) and tantalum(V) ethoxides initiate the ring-opening polymerization of lactones. The Ta(V) species prepared and applied catalytically herein exhibits higher activity in the ring-opening polymerization (ROP) of ε-caprolactone than the previously reported, isostructural Nb(V) complex, contradicting literature comparisons of Nb(V)- and Ta(V)-based protocols. Both systems also initiate the ROP of δ-valerolactone and rac-ß-butyrolactone, kinetic studies confirming retention of higher activity by the Ta congener. Polymerizations of rac-ß-butyrolactone and δ-valerolactone were previously unrealized under Group V- or Ta-mediated conditions, respectively, although the former has afforded only low molecular weight, cyclic poly-3-hydroxybutyrate. Cationic ethoxo-Nb(V) and -Ta(V) δ-valerolactone adducts are also reported, demonstrating the facility of δ-valerolactone as a ligand and the generality of the synthetic method. Both δ-valerolactone-bearing complexes initiate the ROP of ε-caprolactone, δ-valerolactone, and rac-ß-butyrolactone. Accordingly, we have elucidated trends in reactivity and investigated the initiation mechanism for such systems, the insertion event being predicated upon intramolecular nucleophilic attack on the coordinated lactone by the adjacent alkoxide moiety. This mechanism enables quantitative, stoichiometric installation of a single monomer residue distinct from the bulk of the polymer chain, and permits modification of polymer properties via both manipulation of the molecular architecture and tuning of the polymerization kinetics, and thus dispersity, through hitherto inaccessible independent control of the initiation event.

7.
RSC Chem Biol ; 4(12): 1082-1095, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033726

RESUMO

New design and synthetic strategies were developed to generate functional phenyl boronic acid (BA)-based fluorescent probes incorporating the 1,8-naphthalimide (NI) tag. This fluorescent core was anchored onto the BA unit through small organic linkers consisting of nitrogen groups which can arrest, and internally stabilise the phenyl-boronate units. The newly synthesised fluorophores were characterised spectroscopically by NMR spectroscopy and mass spectrometry and evaluated for their ability to bind to a naturally occurring polysaccharide, ß-d-glucan in DMSO and simultaneously as act as in vitro cell imaging reagents. The uptake of these new NI-boronic acid derivatives was studied living cancer cells (HeLa, PC-3) in the presence, and absence, of ß-d-glucan. Time-correlated single-photon counting (TCSPC) of DMSO solutions and two-photon fluorescence-lifetime imaging microscopy (FLIM) techniques allowed an insight into the probes' interaction with their environment. Their cellular uptake and distributions were imaged using laser scanning confocal fluorescence microscopy under single- and two-photon excitation regimes (λmax 910 nm). FLIM facilitated the estimation of the impact of the probe's cellular surroundings using the fluorophore lifetime. The extent to which this was mediated by the ß-d-glucan was visualised by 2-photon FLIM in living cells. The fluorescence lifetime observed under a range of temperatures varied appreciably, indicating that changes in the environment can be sensed by these probes. In all cases, the cellular membrane penetration of these new probes was remarkable even under variable temperature conditions and localisation was widely concentrated in the cellular cytoplasm, without specific organelle trapping: we conclude that these new probes show promise for cellular imaging in living cancer cells.

8.
Anal Chem ; 95(46): 16801-16809, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37931004

RESUMO

1H NMR spectroscopic studies using BINOL as a chiral solvating agent (CSA) for a scalemic sulfiniminoboronic acid (SIBA) have revealed concentration- and enantiopurity-dependent variations in the chemical shifts of diagnostic imine protons used to determine enantiopurity levels. 11B/15N NMR spectroscopic studies and X-ray structural investigations revealed that unlike other iminoboronate species, BINOL-SIBA assemblies do not contain N-B coordination bonds, with 1H NMR NOESY experiments indicating that intermolecular H-bonding networks between BINOL and the SIBA analyte are responsible for these variations. These effects can lead to diastereomeric signal overlap at certain er values that could potentially lead to enantiopurity/configuration misassignments. Consequently, it is recommended that hydrogen-bonding-CSA-based 1H NMR protocols should be repeated using both CSA enantiomers to ensure that any concentration- and/or er-dependent variations in diagnostic chemical shifts are accounted for when determining the enantiopurity of a scalemic analyte.

9.
ACS Macro Lett ; 12(11): 1443-1449, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37824416

RESUMO

A cyclic ketene acetal (CKA) derived from d-glucal was synthesized, and its polymerization using free radicals has been investigated. NMR analysis of the resulting polymers revealed the formation of polyacetal-polyester copolymers, with up to 78% of ester linkages formed by radical ring-opening polymerization (rROP). Conversely, the polymerization of the monomer-saturated analogue only produced acetal linkages, demonstrating that the alkene functionality within the d-glucal pyranose ring is essential to promote ring-opening and ester formation, likely via the stabilization of an allyl radical. The thermal properties of the polymers were linked to the ratio of the ester and acetal linkages. Copolymerization with methyl methacrylate (MMA) afforded statistically PMMA-rich copolymers (66-98%) with linkages prone to hydrolytic degradation and decreased glass-transition temperatures. The retention of the pseudoglucal alkene function offers opportunities to functionalize further these bioderived (co)polymers.

10.
Inorg Chem ; 62(39): 15983-15991, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37712911

RESUMO

The first magnesium pentalenide complexes have been synthesized via deprotonative metalation of 1,3,4,6-tetraphenyldihydropentalene (Ph4PnH2) with magnesium alkyls. Both the nature of the metalating agent and the reaction solvent influenced the structure of the resulting complexes, and an equilibrium between Mg[Ph4Pn] and [nBuMg]2[Ph4Pn] was found to exist and investigated by NMR, XRD, and UV-vis spectroscopic techniques. Studies on the reactivity of Mg[Ph4Pn] with water, methyl iodide, and trimethylsilylchloride revealed that the [Ph4Pn]2- unit undergoes electrophilic addition at 1,5-positions instead of 1,4-positions known for the unsubstituted pentalenide, Pn2-, highlighting the electronic influence of the four aryl substituents on the pentalenide core. The ratio of syn/anti addition was found to be dependent on the size of the incoming electrophile, with methylation yielding a 60:40 mixture, while silylation yielded exclusively the anti-isomer.

11.
J Org Chem ; 88(19): 13584-13589, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37729493

RESUMO

The condensation of readily available O-substituted carbamates with 2,5-dimethoxytetrahydrofuran gives N-alkoxycarbonyl pyrroles in a single step and in good yield. By this method, several common amine protecting groups can be introduced on the pyrrole nitrogen. With the exception of N-Boc, N-alkoxycarbonyl groups have seen only minimal use for protection of the pyrrole nitrogen to date. Here, we show that N-alkoxycarbonyl protection can endow pyrrole with distinct reactivity in comparison with N-sulfonyl protection, for example, in a pyrrole acylation protocol employing carboxylic acids with a sulfonic acid anhydride activator.

12.
Inorg Chem ; 62(38): 15688-15699, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37695575

RESUMO

We report three niobium-based initiators for the catalytic ring-opening polymerization (ROP) of ε-caprolactone, exhibiting good activity and molecular weight control. In particular, we have prepared on the gram-scale and fully characterized a monometallic cationic alkoxo-Nb(V) ε-caprolactone adduct representing, to the best of our knowledge, an unprecedented example of a metal complex with an intact lactone monomer and a functional ROP-initiating group simultaneously coordinated at the metal center. At 80 °C, all three systems initiate the immortal solution-state ROP of ε-caprolactone via a coordination-insertion mechanism, which has been confirmed through experimental studies, and is supported by computational data. Natural bond orbital calculations further indicate that polymerization may necessitate isomerization about the metal center between the alkoxide chain and the coordinated monomer. The observations made in this work are expected to inform mechanistic understanding both of amine tris(phenolate)-supported metal alkoxide ROP initiators, including various highly stereoselective systems for the polymerization of lactides and of coordination-insertion-type ROP protocols more broadly.

13.
ChemSusChem ; 16(21): e202300670, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37332029

RESUMO

Scalable processes have been developed to convert ß-pinene into 4-isopropenylcyclohexanone, which is then used as a feedstock for the divergent synthesis of sustainable versions of the common painkillers, paracetamol and ibuprofen. Both synthetic routes use Pd0 catalysed reactions to aromatize the cyclohexenyl rings of key intermediates to produce the benzenoid ring systems of both drugs. The potential of using bioderived 4-hydroxyacetophenone as a drop-in feedstock replacement to produce sustainable aromatic products is also discussed within a terpene biorefinery context.


Assuntos
Acetaminofen , Ibuprofeno , Monoterpenos Bicíclicos , Terpenos
14.
ACS Omega ; 8(18): 16047-16079, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179648

RESUMO

The long-standing interest in thiosemicarbazones (TSCs) has been largely driven by their potential toward theranostic applications including cellular imaging assays and multimodality imaging. We focus herein on the results of our new investigations into: (a) the structural chemistry of a family of rigid mono(thiosemicarbazone) ligands characterized by extended and aromatic backbones and (b) the formation of their corresponding thiosemicarbazonato Zn(II) and Cu(II) metal complexes. The synthesis of new ligands and their Zn(II) complexes was performed using a rapid, efficient and straightforward microwave-assisted method which superseded their preparation by conventional heating. We describe hereby new microwave irradiation protocols that are suitable for both imine bond formation reactions in the thiosemicabazone ligand synthesis and for Zn(II) metalation reactions. The new thiosemicarbazone ligands, denoted HL, mono(4-R-3-thiosemicarbazone)quinone, and their corresponding Zn(II) complexes, denoted ZnL2, mono(4-R-3-thiosemicarbazone)quinone, where R = H, Me, Ethyl, Allyl, and Phenyl, quinone = acenapthnenequinone (AN), aceanthrenequinone (AA), phenanthrenequinone (PH), and pyrene-4,5-dione (PY) were isolated and fully characterized spectroscopically and by mass spectrometry. A plethora of single crystal X-ray diffraction structures were obtained and analyzed and the geometries were also validated by DFT calculations. The Zn(II) complexes presented either distorted octahedral geometry or tetrahedral arrangements of the O/N/S donors around the metal center. The modification of the thiosemicarbazide moiety at the exocyclic N atoms with a range of organic linkers was also explored, opening the way to bioconjugation protocols for these compounds. The radiolabeling of these thiosemicarbazones with 64Cu was achieved under mild conditions for the first time: this cyclotron-available radioisotope of copper (t1/2 = 12.7 h; ß+ 17.8%; ß- 38.4%) is well-known for its proficiency in positron emission tomography (PET) imaging and for its theranostic potential, on the basis of the preclinical and clinical cancer research of established bis(thiosemicarbazones), such as the hypoxia tracer 64Cu-labeled copper(diacetyl-bis(N4-methylthiosemicarbazone)], [64Cu]Cu(ATSM). Our labeling reactions proceeded in high radiochemical incorporation (>80% for the most sterically unencumbered ligands) showing promise of these species as building blocks for theranostics and synthetic scaffolds for multimodality imaging probes. The corresponding "cold" Cu(II) metalations were also performed under the mild conditions mimicking the radiolabeling protocols. Interestingly, room temperature or mild heating led to Cu(II) incorporation in the 1:1, as well as 1:2 metal: ligand ratios in the new complexes, as evident from extensive mass spectrometry investigations backed by EPR measurements, and the formation of Cu(L)2-type species prevails, especially for the AN-Ph thiosemicarbazone ligand (L-). The cytotoxicity levels of a selection of ligands and Zn(II) complexes in this class were further tested in commonly used human cancer cell lines (HeLa, human cervical cancer cells, and PC-3, human prostate cancer cells). Tests showed that their IC50 levels are comparable to that of the clinical drug cis-platin, evaluated under similar conditions. The cellular internalizations of the selected ZnL2-type compounds Zn(AN-Allyl)2, Zn(AA-Allyl)2, Zn(PH-Allyl)2, and Zn(PY-Allyl)2 were evaluated in living PC-3 cells using laser confocal fluorescent spectroscopy and these experiments showed exclusively cytoplasmic distributions.

15.
RSC Adv ; 13(13): 9046-9054, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36950080

RESUMO

Two Schiff base complexes of copper(ii) and cobalt(iii) having the formulae [CuL2] (Cu-Sal) and [CoL3] (Co-Sal) (HL = 2-(((2-hydroxyethyl)imino)methyl)phenol) have been synthesized and characterized microanalytically, spectroscopically and in the case of Cu-Sal using single crystal X-ray diffraction technique. The single crystal X-ray analysis reveals a square planar geometry around Cu(ii) satisfied by phenoxide oxygen and imine nitrogen of the L- ligand to generate a six membered chelate ring. The solid state structure of Cu-Sal is satisfied by varied intermolecular non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis. Both compounds have been used as sensitizers in TiO2 based dye sensitized solar cells (DSSCs) and the DSSC experiments revealed that Co-Sal offers better photovoltaic performance in comparison to Cu-Sal. The Co-Sal exhibited a J sc of 9.75 mA cm-2 with a V oc of -0.648 V, incident photon to current conversion efficiency (IPCE) of 57% and η of 3.84%. The relatively better photovoltaic performance of Co-Sal could be attributed to better light absorption and dye loading than that of Cu-Sal.

16.
Org Biomol Chem ; 21(4): 858-866, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602170

RESUMO

The non-benzenoid aromatic system azulene is sufficiently nucleophilic at C1 that it can react with a protonated aldehyde to form an α-azulenyl alcohol. This in turn may be protonated and undergo loss of water to give an azulene α-carbocation. We report the isolation of such azulenyl cations as salts with non-coordinating anions. The salts have been characterised by NMR, UV/Vis absorption and (in certain cases) X-ray crystallography. Reduction of representative salts to afford azulenyl(aryl) methylenes has been demonstrated.

17.
Inorg Chem ; 62(5): 2181-2187, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695174

RESUMO

An in-depth study of the class of organotin cations bearing weakly coordinating trifluoromethanesulfonate/arylsulfonate has led to key insights into their stability, structural aspects, and role as catalysts. Related chemistry with alkanesulfonate ligands remains a missing link due to the strong Sn-O bond. The study reported herein describes the scope of diorganostannates, [n-Bu4N][R2Sn(OSO2R1)3] (R = n-Bu, R1 = Me(1), Et(2); R = Ph, R1 = Me(3)), as reactive substrates in the presence of adventitious water to afford [n-Bu2SnOH(OSO2Me)] (4), [n-Bu2Sn(H2O)4][n-Bu4N][OSO2Et]3·H2O (5), and [Ph2Sn(H2O)4][n-Bu4N]2[OSO2Me]4 (6), respectively, the latter two being the first examples of salt cocrystals comprising tetra(aqua)diorganotin cations. Hydrolysis of 3 in the presence of 1,4-bis((1H-imidazol-1-yl)methyl)benzene (bix) as the N-donor ligand proceeds via disproportionation and yields [Ph3Sn(bix)](OSO2Me) (7) along with an insoluble solid, likely derived from the hydrolysis of PhSn(OSO2Me)3. Direct evidence of this phenomenon can be gleaned from ESI-MS of 3, which identifies mass clusters corresponding to [Ph3Sn(OSO2Me)2]- and [PhSn(OSO2Me)3-H+]-. X-ray crystallographic studies of 1-7 are reported to establish their structural identity and the role of alkanesulfonate anions in the formation of supramolecular assemblies.

18.
Inorg Chem ; 62(6): 2576-2591, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36708353

RESUMO

Analogous to the ubiquitous alkoxide ligand, metal boroxide and boryloxy complexes are an underexplored class of hard anionic O- ligand. A new series of amine-stabilized Li, Sn(II), and Zn boryloxy complexes, comprising electron-rich tetrahedral boron centers have been synthesized and characterized. All complexes have been characterized by one-dimensional (1D), two-dimensional (2D), and DOSY NMR, which are consistent with the solid-state structures unambiguously determined via single-crystal X-ray diffraction. Electron-rich µ2- (Sn and Zn) and µ3- (Li) boryloxy binding modes are observed. Compounds 6-9 are the first complexes of this class, with the chelating bis- and tris-phenol ligands providing a scaffold that can be easily functionalized and provides access to the boronic acid pro-ligand, hence allowing facile direct synthesis of the resulting compounds. Computational quantum chemical studies suggest a significant enhancement of the π-donor ability of the amine-stabilized boryloxy ligand because of electron donation from the amine functionality into the p-orbital of the boron atom.

19.
Phys Chem Chem Phys ; 24(31): 18816-18823, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904064

RESUMO

The electronic properties of a charge-transfer (donor-acceptor) semiconducting organic co-crystal, Perylene:F4-TCNQ (PE:F4) (the donor, D, is PE and the acceptor, A, is 2,3,5,6-tetrafluoro-7,7,8,8 tetracyanoquinodimethane (F4)) in its 3 : 2 stoichiometry, are experimentally and theoretically studied. This is performed by means of electron paramagnetic resonance (EPR) and solid state electrochemical techniques, such as cyclic voltammetry (CV) measurements on single crystals. In particular, solid state electrochemistry proves to be an effective tool to probe, on a macroscopic scale, the electronic characteristics of the co-crystal. However, EPR highlights the presence of spin ½ radicals localized on F4 molecules, possibly linked to defects. The experimental findings are discussed on the basis of density functional theory (DFT) based calculations, carried out using both the projector augmented wave (PAW), with "periodic boundary conditions" (pbc), method and the localized orbitals, molecular cluster, approach. In particular, a satisfying agreement is found between the experimental, 0.336 eV (electrochemical), and theoretical, 0.303 eV (PAW), band gaps. Differences with the reported optical bandgap are discussed considering excitonic effects.

20.
ACS Omega ; 7(16): 13750-13777, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559172

RESUMO

We report on the synthesis and spectroscopic characterization of a new series of coordinating monothiosemicarbazones incorporating aromatic backbones, featuring O/N/S donor centers monosubstituted with different aliphatic, aromatic, fluorinated, and amine-functionalized groups at their N centers. Their ability to bind metal ions such as Zn(II) and Ga(III) was explored, and the formation of two different coordination isomers of the Zn(II) complex was demonstrated by X-ray diffraction studies using synchrotron radiation. These studies showed the planar geometry for the coordinated mono(thiosemicarbazone) ligand and that the metal center can adopt either a heavily distorted tetrahedral Zn center (placed in an N/S/S/N environment, with CN = 4) or a pseudo-octahedral geometry, where the Zn(II) center is in the O/N/S/S/N/O environment, and CN = 6. Furthermore, 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT) assays and cellular imaging in living cells were subsequently performed in two different cancer cell lines: PC-3 (a standard cell line derived from a bone metastasis of a stage IV prostate cancer) and EMT6 (a commercial murine mammary carcinoma cell line). The radiolabeling of new functional and aromatic monothiosemicarbazones with either gallium-68 (under pH control) or fluorine-18 is discussed. The potential of this class of compounds to act as synthetic scaffolds for molecular imaging agents of relevance to positron emission tomography was evaluated in vitro, and the cellular uptake of a simultaneously fluorinated and [68Ga]-labeled mono(thiosemicarbazone) was investigated and is reported here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...