Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 2(3): 1105-1114, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133036

RESUMO

Bimetallic nanocrystals with a core@shell architecture are versatile, multifunctional particles. The lattice mismatch between core and shell regions induces strain, affecting the electronic properties of the shell metal, which is important for applications in catalysis. Here, we analyze this strain in core@shell nanocubes as a function of lattice mismatch and shell thickness. Coupling geometric phase analysis from atomic resolution scanning transmission electron microscopy images with molecular dynamics simulations reveals lattice relaxation in the shell within only a few monolayers and an overexpansion in the axial direction. Interestingly, many works report core@shell metal nanocatalysts with optimum performance at greater shell thicknesses. Our findings suggest that not strain alone but secondary factors, such as structural defects or structural changes in operando, may account for observed enhancements in some strain-engineered nanocatalysts; e.g., Rh@Pt nanocubes for formic acid electrooxidation.

2.
Angew Chem Int Ed Engl ; 59(2): 943-950, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31721406

RESUMO

Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near-field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single-crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.

3.
Nanoscale ; 11(2): 512-519, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543237

RESUMO

Nanostructures with well-defined crystallite sizes, shapes, and compositions are finding use in areas such as energy, security, and even medicine. Seeded growth is a promising strategy to achieve shape-controlled nanostructures, where specific structural features are often directed by the underlying symmetry of the seeds. Here, thiophenol derivatives capable of different metal-thiolate interactions were introduced into the synthesis of Au/Pd nanostructures by seed-mediated co-reduction. Our systematic analysis reveals that the symmetry and composition of the bimetallic nanoparticles (NPs) can be tuned as a function of additive binding strength and concentration, with symmetry reduction observed in some cases. Furthermore, additives with both thiol and amine functionalities facilitate random branching on the octahedral seed. Significantly, this synthetic versatility arises because the thiophenol derivatives modify both the surface capping of the growing nanostructures and the local ligand environment of the metal precursors, highlighting how the dual roles of synthesis components can be exploited to achieve high quality bimetallic nanostructures.

4.
Adv Mater ; : e1801563, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29984851

RESUMO

As synthetic methods advance for metal nanoparticles, more rigorous studies of structure-function relationships can be made. Many electrocatalytic processes depend on the size, shape, and composition of the nanocatalysts. Here, the properties and electrocatalytic behavior of random alloyed and intermetallic nanoparticles are compared. Beginning with an introduction of metallic nanoparticles for catalysis and the unique features of bimetallic compositions, the discussion transitions to case studies of nanoscale electrocatalysts where direct comparisons of alloy and intermetallic compositions are undertaken for methanol electrooxidation, formic acid electrooxidation, the oxygen reduction reaction, and the electroreduction of carbon dioxide (CO2 ). Design and synthesis strategies for random alloyed and intermetallic nanoparticles are discussed, with an emphasis on Pt-M and Cu-M compositions as model systems. The differences in catalytic performance between alloys and intermetallic nanoparticles are highlighted in order to provide an outlook for future electrocatalyst design.

5.
ACS Omega ; 3(4): 3952-3956, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458632

RESUMO

Here, a systematic study of the roles played by Pd seeds during seed-mediated coreduction of Pd-Pt is presented. Either nanoparticles with porous, hollow architectures or concave nanocubes were achieved, depending on whether the synthesis conditions favored galvanic replacement or overgrowth. Prior works have shown that the galvanic replacement reaction between seeds and a precursor can be suppressed by introducing a faster, parallel reaction that removes one of the reagents (e.g., adatom generation in solution rather than surface-catalyzed precursor reduction). Here, we show that the galvanic replacement reaction depends on the size and concentration of the Pd seeds; the former of which can be manipulated during the course of the reaction through the use of a secondary reducing agent. This insight will guide future syntheses of multimetallic nanostructures by seeded methods, allowing for a range of nanocrystals to be precisely engineered for a variety of applications.

6.
Langmuir ; 33(51): 14709-14717, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29211482

RESUMO

Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.

7.
Dalton Trans ; 46(32): 10727-10733, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28682378

RESUMO

Photocatalysts offer an excellent opportunity to shift the global energy landscape from a fossil fuel-dependent paradigm to sustainable and carbon-neutral solar fuels. Oxynitride materials such as LaTiO2N are potential photocatalysts for the water splitting reaction due to their high oxidative stability and their narrow band gaps, which are suitable for visible light absorption. However, facile synthetic routes to metal oxynitrides with controlled morphologies are rare. Ultrasonic spray synthesis (USS) offers a facile method toward complex metal oxides which can potentially be converted to oxynitrides with preservation of the microsphere structures that typify the products from such aerosol routes. Here, La-Ti-O microspheres were facilely produced by USS and converted by ammonolysis to LaTiO2N microspheres with porous shells and hollow interiors. This particle architecture is accounted for by coupling suitable combustion chemistry with the aerosol technique, producing precursor particles where the La3+ and Ti4+ are well-mixed at small length scales; this feature enables preservation of the microsphere morphology during nitridation despite the crystallographic changes that occur. The LaTiO2N microspheres are comparable oxygen evolving photocatalysts to samples produced by conventional solid state methods. These results demonstrate the utility of USS as a facile, potentially scalable route to complex photocatalytic materials and their precursors with distinct morphologies.

8.
Langmuir ; 33(24): 6054-6061, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28586227

RESUMO

Bimetallic nanostructures are primarily synthesized in small volume batches. However, droplet-based reactors are receiving attention due to their ability to maintain thermal and compositional equilibrium within and between droplets, enabling flow operations for inline analyses and the scale-up of nanomaterial syntheses. Here, the syntheses of shape-controlled core@shell Au@Pd nanostructures with variable shell thicknesses are reported through control of the relative flow rates of reagents within the microreactor. Specifically, Pd shells were grown on cubic or octahedral Au seeds, selected as a model system. In batch reactions, shell thickness is determined by precursor concentration; however, as shown here, precursor feedstock concentration can be held constant, with the precursor concentration within the droplets being controlled through relative flow rates. This approach allows process conditions to be modified inline rather than from batch to batch to achieve particles with different shell thicknesses, and this procedure should be applicable to other multicomponent systems.

9.
Nanoscale ; 9(22): 7570-7576, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28534897

RESUMO

Metal nanoparticles (NPs) are of interest for applications in catalysis, electronics, chemical sensing, and more. Their utility is dictated by their composition and physical parameters such as particle size, particle shape, and overall architecture (e.g., hollow vs. solid). Interestingly, the addition of a second metal to create bimetallic NPs adds multifunctionality, with new emergent properties common. However, synthesizing structurally defined bimetallic NPs remains a great challenge. One synthetic pathway to architecturally controlled bimetallic NPs is seed-mediated co-reduction (SMCR) in which two metal precursors are simultaneously co-reduced to deposit metal onto shape-controlled metal seeds, which direct the overgrowth. Previously demonstrated in a Au-Pd system, here SMCR is applied to a system with a larger lattice mismatch between the depositing metals: Pd and Cu (7% mismatch for Pd-Cu vs. 4% for Au-Pd). Through manipulation of precursor reduction kinetics, the morphology and bimetallic distribution of the resultant NPs can be tuned to achieve eight-branched Pd-Cu heterostructures with Cu localized at the tips of the Pd nanocubes as well as branched Pd-Cu alloyed nanostructures and polyhedra. Significantly, the symmetry of the seeds can be transferred to the final nanostructures. This study expands our understanding of SMCR as a route to structurally defined bimetallic nanostructures and the synthesis of multicomponent nanomaterials more generally.

10.
Dalton Trans ; 44(41): 17883-905, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26434727

RESUMO

Colloidal synthesis offers a route to nanoparticles (NPs) with controlled composition and structural features. This Perspective describes the use of polyvinylpyrrolidone (PVP) to obtain such nanostructures. PVP can serve as a surface stabilizer, growth modifier, nanoparticle dispersant, and reducing agent. As shown with examples, its role depends on the synthetic conditions. This dependence arises from the amphiphilic nature of PVP along with the molecular weight of the selected PVP. These characteristics can affect nanoparticle growth and morphology by providing solubility in diverse solvents, selective surface stabilization, and even access to kinetically controlled growth conditions. This Perspective includes discussions of the properties of PVP-capped NPs for surface enhanced Raman spectroscopy (SERS), assembly, catalysis, and more. The contribution of PVP to these properties as well as its removal is considered. Ultimately, the NPs accessed through the use of PVP in colloidal syntheses are opening new applications, and the concluding guidelines provided herein should enable new nanostructures to be accessed facilely.

11.
Phys Chem Chem Phys ; 16(41): 22600-10, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25230730

RESUMO

The electrochemical reduction of N,N'-dithiobisphthalimide and N,N'-thiobisphthalimide is investigated using electrochemical techniques and theoretical calculations. The results are rationalized using adequate electron transfer theories. The reduction leads to the ejection of diatomic sulfur and involves an interesting autocatalytic mechanism. This mechanism is dependent on the concentration of the initial compound and the cyclic voltammetric scan rate. The starting material is reduced both at the electrode and through homogeneous electron transfer from the produced sulfur. The initial electron transfer follows a stepwise mechanism involving the formation of the corresponding radical anion. This is supported by both the electrochemical data and the theoretical calculation results. The radical anion of the N,N'-dithiobisphthalimide dissociates through cleavage of the N-S chemical bond and not the S-S chemical bond. Application of the extension of the dissociative electron transfer theory to the dissociation of radical anions shows that the N-S chemical bond dissociates despite being stronger than the S-S chemical bond. This is due to the large difference in the oxidation potentials of the two potential anions (the phthalimidyl anion and the phthalimidyl thiyl anion). The electrochemical reduction of N,N'-thiobisphthalimide involves the intermediate formation of N,N'-dithiobisphthalimide and hence the autocatalytic process is less efficient.


Assuntos
Ftalimidas/química , Enxofre/química , Ânions/química , Técnicas Eletroquímicas , Cinética , Oxirredução , Teoria Quântica , Termodinâmica
12.
Phys Chem Chem Phys ; 15(1): 348-57, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23168907

RESUMO

We report on a series of arene sulfonyl phthalimides which were prepared and used to modify polycrystalline gold and Au(111) gold surfaces. Three investigated compounds are the p-iodo-, the p-methoxy-, and the p-fluoro-benzenesulfonyl phthalimides. X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and scanning tunneling microscopy (STM) studies were used to characterize the modified surfaces. The XPS data show that all three investigated compounds decompose on gold surfaces. The decomposition leads to the adsorption of sulfur and ejection of the other groups except for the p-iodo compound, which also leads to the deposition of iodine. The cyclic voltammetry data confirm these results and show that high coverage values of deposited sulfur are obtained. High-resolution STM imaging showed a dynamic behaviour of sulfur on gold for all compounds. Movement of sulfur species on the Au(111) surface is observed. Various phases including a new 'zig-zag' pattern and a new 2 : 1 line pattern are presented. Sequential STM imaging also showed movement of one area of sulfur while another remains static. These results are important because (i) they provide direct experimental evidence that these hexavalent sulfur compounds react with gold surfaces breaking all sulfur chemical bonds, (ii) they show that sulfonyl phthalimides can be used as efficient precursors for the deposition of sulfur on gold, and (iii) very importantly they show the adlayer nature of the sulfur modified gold surface which has been a heavily debated question.

13.
Langmuir ; 28(49): 16881-9, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23131048

RESUMO

The use of triphenylmethane sulfenyl chloride as a new precursor leads to the efficient deposition of sulfur on polycrystalline gold and Au(111) substrates. The modified surfaces are characterized using X-ray photoelectron spectroscopy (XPS), electrochemistry and scanning tunneling microscopy (STM). The XPS data shows the rapid deposition of polymeric sulfur within very short times. Electrochemical stripping cyclic voltammetry (CV) confirms the rapid deposition and shows that high coverage values are achieved. STM imaging shows the formation of a wide range sulfur layer and production of the well-known etch pits. High-resolution STM images confirm the high density of the sulfur layers and show formation of a long-range phase consisting of rhombus structures close to the previously described rectangular structures along with other parallelograms and partial parallelograms. The present results do not show the initial formation of any organic self-assembled monolayer (SAM) indicating that the formation of polymeric sulfur does not result from the decomposition of an initial SAM as previously observed with alkyl and aryl thiolate-based SAMs. The suggested mechanism involves an initial reductive process similar to the one reported for thiocyanates and sulfenyl chlorides. This is followed by the dissociation of the Ph(3)C-S bond, leaving only sulfur on the surface, through a process leading to the recombination of the remaining fragments to yield triphenylmethyl chloride.

14.
Langmuir ; 28(45): 15853-63, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23078107

RESUMO

The formation of aromatic SAMs on Au(111) using three nitro-substituted arene sulfenyl chlorides (4-nitrophenyl sulfenyl chloride (1), 2-nitrophenyl sulfenyl chloride (2), and 2,4-dinitrophenyl sulfenyl chloride (3)) is studied. The formation of SAMs and their quality are investigated as a function of the position of the nitro substituent(s) on the aromatic ring. The modified surfaces are characterized by X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS), and cyclic voltammetry (CV). The results show that all three compounds are deposited on Au within very short times. The corresponding coverages are determined using CV. However, only compound 1 forms stable, long-range, well-ordered SAMs. The 4-nitrophenyl thiolate is adsorbed nearly vertically on the Au surface. Compounds 2 and 3 both form lower-quality SAMs where the adsorbed nitro-phenyl thiolates are more tilted. These SAMs are less stable than the ones obtained with the 4-nitrosubsituted precursor and decompose with time, leaving only sulfur on the gold surface.

15.
Chemphyschem ; 13(5): 1240-5, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22383264

RESUMO

Dithiobisphthalimide is used as a new precursor for the spontaneous deposition of sulfur on gold surfaces in acetonitrile. Characterization of the modified surfaces is achieved using X-ray photoelectron spectroscopy (XPS), electrochemistry and scanning tunneling microscopy (STM). The reported results indicate that the sulfur deposition is an efficient and fast process and that high coverages can be reached very quickly. Sequential high-resolution STM in air allows the direct observation, for the first time, of the mobility of the usually observed rectangular structures as individual units. It also shows the reversible association/dissociation of these rectangles. The nature of these structures is highly debated in the literature and the present work provides new insights into their nature through the use of a new sulfur precursor under non-traditional conditions. To explain our results we consider these structures as simple sulfur adlayers on the gold surface.

16.
Langmuir ; 27(22): 13544-53, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21970561

RESUMO

Long-range-ordered aromatic SAMs are formed on Au(111) using 4-nitrophenyl sulfenyl chloride as a precursor. Although the main structure is a √3 × âˆš3 with a molecular density similar to that usually found for aliphatic SAMs, particular spots presenting specific shapes are also observed by STM. These include hexagons, partial hexagons, parallelograms, and zigzags resulting from specific arrangements of adsorbed molecules. These molecular arrangements are reversible as they form and dissociate or "vanish" in various areas on the surface. STM shows that these particular structures provide some order to their surrounding because areas void of these structures look less ordered. More interestingly, STM shows submolecular details of the molecules involved in forming these structures, hence providing direct experimental evidence for the ability of the STM to provide physical structure information of standing up SAMs. This is indeed a heavily debated question, and this work reports the first experimental example where submolecular physical structure is revealed by STM for standing-up SAMs.

17.
Chem Commun (Camb) ; 47(44): 12128-30, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21993261

RESUMO

The reduction of N-(p-fluorobenzenesulfonyl)phthalimide on polycrystalline gold and Au(111) was studied. Our key finding is the decomposition of the compound on the surface, leaving only sulfur behind. This was supported by X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and scanning tunneling microscopy (STM). The modification leads to observation by STM of well-known as well as new phases for the S modified Au(111) surface.

18.
Langmuir ; 27(20): 12270-4, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21916512

RESUMO

Hexamethyldisilathiane was successfully used as a new precursor for the formation of S layers on Au and to study their interaction. Characterization of the S modified gold surface was done by X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and scanning tunneling microscopy (STM). Key findings include the direct observation by STM of (i) coexistence of different phases, (ii) multiple sulfur layers formation, (ii) formation of rectangular structures not only on the adlayer but also on the top layer, and (iv) rectangular structure mobility on different layers. These results provide clear evidence regarding the adsorbate nature of the rectangular structures, solving a highly debated question.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...