Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 641: 123051, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196881

RESUMO

Freeze-drying of pharmaceuticals produces lyophilisates with properties that depend on both the formulation and the process. Characterisation of the lyophilisate in terms of appearance is necessary not only to produce a visually appealing product, but also to gain insight into the freeze-drying process. The present study investigates the impact of post-freeze annealing on the volume of lyophilisates. For this purpose, sucrose and trehalose solutions were freeze-dried with different annealing conditions and the resulting lyophilisates were analysed with a 3D structured light scanner. The external structure of the lyophilisates was found to be dependent on the bulk materials as well as the choice of vials, while the volume was influenced by the annealing time and temperature. Additionally, differential scanning calorimetry was used to determine glass transition temperatures of frozen samples. As a novelty, the volumes of the lyophilisates and their corresponding glass transition temperatures were compared. This resulted in a correlation supporting the theory that the shrinkage of lyophilisates depends on the amount of residual water in the freeze-concentrated amorphous phase before drying. Understanding the volume change of lyophilisates, in combination with material properties such as glass transition temperature, forms the basis for relating physicochemical properties to process parameters in lyophilisation.


Assuntos
Sacarose , Trealose , Trealose/química , Sacarose/química , Temperatura , Temperatura de Transição , Liofilização/métodos , Varredura Diferencial de Calorimetria
2.
Pharmaceutics ; 14(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745749

RESUMO

Supercooling during the freezing of pharmaceutical solutions often leads to suboptimal freeze-drying results, such as long primary drying times or a collapse in the cake structure. Thermal treatment of the frozen solution, known as annealing, can improve those issues by influencing properties such as the pore size and collapse temperature of the lyophilisate. In this study we aimed to show that annealing causes a rearrangement of water molecules between ice crystals, as well as between the freeze-concentrated amorphous matrix and the crystalline ice phase in a frozen binary aqueous solution. Ice crystal sizes, as well as volume fractions of the crystalline and amorphous phases of 10% (w/w) sucrose and trehalose solutions, were quantified after annealing using freeze-drying microscopy and image labelling. Depending on the annealing time and temperature, the amorphous phase was shown to decrease its volume due to the crystallisation of vitreous water (i.e., glassy state relaxation) while the crystalline phase was undergoing coarsening (i.e., Ostwald ripening). These results allow, for the first time, a quantitative comparison of the two phenomena. It was demonstrated that glassy state relaxation and Ostwald ripening, although occurring simultaneously, are distinct processes that follow different kinetics.

3.
Front Chem ; 6: 288, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065924

RESUMO

This work presents the design and evaluation of a fully wireless, multi-point temperature sensor system as a Process Analytical Technology (PAT) for lyophilization. Each sensor contains seven sensing elements which measure the product temperature at various positions of the contents of a glass vial. The sensor performance was studied by freeze drying experiments with sensor placement in both center and edge of full shelf of 6R glass vials with 4 ml fill volume. Product temperature profile and primary drying time measured at the bottom center position in the glass vial by the wireless sensor as well as the primary drying time are in close comparison with the thermocouple data. The drying times during primary drying were determined at the top, higher middle, lower middle and bottom positions which are 3.26 mm apart vertically in the vial by the wireless sensor based on the temperature profile measured at different positions. For a center vial, the drying time from the start of primary drying to each layer was measured at 3.9, 9.3, 14.2, and 21 h respectively, allowing to track the sublimation interface during primary drying phase. In addition, sublimation rate at each layer was calculated based on the drying time and theoretical weight loss of ice in the product. The sublimation rate at the beginning of the primary drying was similar to the sublimation rate by gravimetric method. Furthermore, the vial heat transfer coefficient (Kv ) was also calculated based on the sublimation rate. Thus, allowing the use of the multi-point wireless sensor to rapidly monitor the sublimation rate and Kv for every batch as continuous process verification. Similar tests were also conducted with 3% w/v mannitol solutions and the results were consistent demonstrating potential for real-time monitoring, process verification and cycle optimization for pharmaceutical lyophilization.

4.
Int J Pharm ; 469(1): 59-66, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-24751732

RESUMO

The aim of this study was to optimize the shelf temperature and the drying time, mainly dependent on the residual water content of a lyophilized product using a novel simulation program for the secondary drying of lyophilization. The simulation program was developed based upon heat transfer formulas, two empirical formulas, and a modified Fick's second law. When a preliminary lyophilization run of secondary drying was carried out, the equilibrium product temperature at the end of secondary drying under various shelf temperatures was accurately predicted by the heat transfer formulas. The apparent diffusion coefficient of water, Deff, and the apparent equilibrium residual water content, We, under the predicted equilibrium product temperature were estimated by two empirical formulas. These estimated Deff and We allow the modified Fick's second law to predict the residual water content in the lyophilized product. Using the developed simulation program, it was verified that the secondary drying condition to achieve the desired residual water content in the lyophilized product was successfully predicted. Therefore, the simulation program can be used to effectively design the secondary drying condition of lyophilization cycles without a trial and error approach.


Assuntos
Simulação por Computador , Dessecação , Liofilização , Lactose/química , Modelos Químicos , Sacarose/química , Tecnologia Farmacêutica/métodos , Água/química , Difusão , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo
5.
Chem Pharm Bull (Tokyo) ; 62(2): 153-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492585

RESUMO

The purpose of this study was to develop a novel simulation program to accurately predict the maximum product temperature and the primary drying time in lyophilization using the predictive model for dry layer resistance, which is the resistance of dried cake against water vapor flow. Ten percent sucrose aqueous solution was selected as a model formulation. It was demonstrated that the deviations between the predicted and measured maximum product temperature were attributed to the error of dry layer resistance at a given drying condition, which was different from the measured dry layer resistance in a preliminary lyophilization run for the simulation program. However, when the predictive model of dry layer resistance was used for the simulation program, the model remarkably enhanced the accuracy of the simulation program to predict the maximum product temperature and primary drying time under various operating conditions. Furthermore, the primary drying condition required for minimized drying at a close collapse temperature was successfully discovered through one preliminary run. Therefore, it is expected that the developed simulation program is useful for designing the lyophilization cycle without a trial and error approach.


Assuntos
Liofilização/métodos , Sacarose/química , Água/química , Simulação por Computador , Modelos Químicos , Temperatura , Volatilização
6.
Int J Pharm ; 452(1-2): 180-7, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23684561

RESUMO

Dry layer resistance, which is the resistance of dried cake against water vapor flow generated from sublimation, is one of the important parameters to predict maximum product temperature and drying time during primary drying in lyophilization. The purpose of this study was to develop the predictive model of dry layer resistance under various primary drying conditions using the dry layer resistance obtained from a preliminary lyophilization run. When the maximum dry layer resistance was modified under the assumption that the chamber pressure is zero, the modified dry layer resistance, which is defined as specific dry layer resistance, correlated well with the sublimation rate. From this correlation, the novel predictive model including the empirical formula of sublimation rate and specific dry layer resistance is proposed. In this model, the dry layer resistance under various conditions of shelf temperature and chamber pressure was successfully predicted based on the relationship of the sublimation rate and specific dry layer resistance of the edge and center vials obtained from the product temperature in one preliminary cycle run. It is expected that this predictive model could be a practical and useful tool to predict product temperature during primary drying.


Assuntos
Modelos Teóricos , Sacarose/química , Liofilização , Tecnologia Farmacêutica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA