Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 178: 108697, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38850958

RESUMO

Temporal interference stimulation (TIS) uses two pairs of conventional transcranial alternating current stimulation (tACS) electrodes, each with a different frequency, to generate a time-varying electric field (EF) envelope (EFE). The EFE focality in primary somatosensory and motor cortex areas of a standard human brain was computed using newly defined linear alignment montages. Sixty head volume conductor models constructed from magnetic resonance images were considered to evaluate interindividual variability. Six TIS and two tACS electrode montages were considered, including linear and rectangular alignments. EFEs were computed using the scalar-potential finite-difference method. The computed EFE was projected onto the standard brain space for each montage. Computational results showed that TIS and tACS generated different EFE and EF distributions in postcentral and precentral gyri regions. For TIS, the EFE amplitude in the target areas had lower variability than the EF strength of tACS. However, bipolar tACS montages showed higher focality in the superficial postcentral and precentral gyri regions than in TIS. TIS generated greater EFE penetration than bipolar tACS at depths <5-10 mm below the brain surface. From group-level analysis, tACS with a bipolar montage was preferred for targets <5-10 mm in depth (gyral crowns) and TIS for deeper targets. TIS with a linear alignment montage could be an effective method for deep structures and sulcal walls. These findings provide valuable insights into the choice of TIS and tACS for stimulating specific brain regions.

2.
Biosensors (Basel) ; 14(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534260

RESUMO

An electrocardiogram (ECG) is used to observe the electrical activity of the heart via electrodes on the body surface. Recently, an ECG with fewer electrodes, such as a bipolar ECG in which two electrodes are attached to the chest, has been employed as wearable devices. However, the effect of different geometrical factors and electrode-pair locations on the amplitude and waveform of ECG signals remains unclear. In this study, we computationally evaluated the effects of body morphology, heart size and orientation, and electrode misalignment on ECG signals for 48 scenarios using 35 bipolar electrode pairs (1680 waveforms) with a dynamic time warping (DTW) algorithm. It was observed that the physique of the human body model predominantly affected the amplitude and waveform of the ECG signals. A multivariate analysis indicated that the heart-electrode distance and the solid angle of the heart from the electrode characterized the amplitude and waveform of the ECG signals, respectively. Furthermore, the electrode locations for less individual variability and less waveform distortion were close to the location of electrodes V2 and V3 in the standard 12-lead. These findings will facilitate the placement of ECG electrodes and interpretation of the measured ECG signals for wearable devices.


Assuntos
Eletrocardiografia , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Eletrodos
3.
Front Neurosci ; 18: 1331416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476868

RESUMO

The application of 28 GHz millimeter-wave is prevalent owing to the global spread of fifth-generation wireless communication systems. Its thermal effect is a dominant factor which potentially causes pain and tissue damage to the body parts exposed to the millimeter waves. However, the threshold of this thermal sensation, that is, the degree of change in skin temperature from the baseline at which the first subjective response to the thermal effects of the millimeter waves occurs, remains unclear. Here, we investigated the thermal sensation threshold and assessed its reliability when exposed to millimeter waves. Twenty healthy adults were exposed to 28 GHz millimeter-wave on their left middle fingertip at five levels of antenna input power: 0.2, 1.1, 1.6, 2.1, and 3.4 W (incident power density: 27-399 mW/cm2). This measurement session was repeated twice on the same day to evaluate the threshold reliability. The intraclass correlation coefficient (ICC) and Bland-Altman analysis were used as proxies for the relative and absolute reliability, respectively. The number of participants who perceived a sensation during the two sessions at each exposure level was also counted as the perception rate. Mean thermal sensation thresholds were within 0.9°C-1.0°C for the 126-399 mW/cm2 conditions, while that was 0.2°C for the 27 mW/cm2 condition. The ICCs for the threshold at 27 and 126 mW/cm2 were interpreted as poor and fair, respectively, while those at higher exposure levels were moderate to substantial. Apart from a proportional bias in the 191 mW/cm2 condition, there was no fixed bias. All participants perceived a thermal sensation at 399 mW/cm2 in both sessions, and the perception rate gradually decreased with lower exposure levels. Importantly, two-thirds of the participants answered that they felt a thermal sensation in both or one of the sessions at 27 mW/cm2, despite the low-temperature increase. These results suggest that the thermal sensation threshold is around 1.0°C, consistent across exposure levels, while its reliability increases with higher exposure levels. Furthermore, the perception of thermal sensation may be inherently ambiguous owing to the nature of human perception.

4.
Front Neurosci ; 18: 1332135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529268

RESUMO

Electrode montage optimization for transcranial electric stimulation (tES) is a challenging topic for targeting a specific brain region. Targeting the deep brain region is difficult due to tissue inhomogeneity, resulting in complex current flow. In this study, a simplified protocol for montage optimization is proposed for multichannel tES (mc-tES). The purpose of this study was to reduce the computational cost for mc-tES optimization and to evaluate the mc-tES for deep brain regions. Optimization was performed using a simplified protocol for montages under safety constraints with 20 anatomical head models. The optimization procedure is simplified using the surface EF of the deep brain target region, considering its small volume and non-concentric distribution of the electrodes. Our proposal demonstrated that the computational cost was reduced by >90%. A total of six-ten electrodes were necessary for robust EF in the target region. The optimization with surface EF is comparable to or marginally better than using conventional volumetric EF for deep brain tissues. An electrode montage with a mean injection current amplitude derived from individual analysis was demonstrated to be useful for targeting the deep region at the group level. The optimized montage and injection current were derived at the group level. Our proposal at individual and group levels showed great potential for clinical application.

5.
Phys Med Biol ; 69(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306964

RESUMO

Objective. Electroencephalograms (EEGs) are often used to monitor brain activity. Several source localization methods have been proposed to estimate the location of brain activity corresponding to EEG readings. However, only a few studies evaluated source localization accuracy from measured EEG using personalized head models in a millimeter resolution. In this study, based on a volume conductor analysis of a high-resolution personalized human head model constructed from magnetic resonance images, a finite difference method was used to solve the forward problem and to reconstruct the field distribution.Approach. We used a personalized segmentation-free head model developed using machine learning techniques, in which the abrupt change of electrical conductivity occurred at the tissue interface is suppressed. Using this model, a smooth field distribution was obtained to address the forward problem. Next, multi-dipole fitting was conducted using EEG measurements for each subject (N= 10 male subjects, age: 22.5 ± 0.5), and the source location and electric field distribution were estimated.Main results.For measured somatosensory evoked potential for electrostimulation to the wrist, a multi-dipole model with lead field matrix computed with the volume conductor model was found to be superior than a single dipole model when using personalized segmentation-free models (6/10). The correlation coefficient between measured and estimated scalp potentials was 0.89 for segmentation-free head models and 0.71 for conventional segmented models. The proposed method is straightforward model development and comparable localization difference of the maximum electric field from the target wrist reported using fMR (i.e. 16.4 ± 5.2 mm) in previous study. For comparison, DUNEuro based on sLORETA was (EEG: 17.0 ± 4.0 mm). In addition, somatosensory evoked magnetic fields obtained by Magnetoencephalography was 25.3 ± 8.5 mm using three-layer sphere and sLORETA.Significance. For measured EEG signals, our procedures using personalized head models demonstrated that effective localization of the somatosensory cortex, which is located in a non-shallower cortex region. This method may be potentially applied for imaging brain activity located in other non-shallow regions.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Masculino , Humanos , Adulto Jovem , Adulto , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética , Couro Cabeludo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Modelos Neurológicos , Cabeça/diagnóstico por imagem , Cabeça/fisiologia
6.
Environ Res ; 247: 118202, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224937

RESUMO

Recently, global warming has become a prominent topic, including its impacts on human health. The number of heat illness cases requiring ambulance transport has been strongly linked to increasing temperature and the frequency of heat waves. Thus, a potential increase in the number of cases in the future is a concern for medical resource management. In this study, we estimated the number of heat illness cases in three prefectures of Japan under 2 °C global warming scenarios, approximately corresponding to the 2040s. Based on the population composition, a regression model was used to estimate the number of heat illness cases with an input parameter of time-dependent meteorological ambient temperature or computed thermophysiological response of test subjects in large-scale computation. We generated 504 weather patterns using 2 °C global warming scenarios. The large-scale computational results show that daily amount of sweating increased twice and the core temperature increased by maximum 0.168 °C, suggesting significant heat strain. According to the regression model, the estimated number of heat illness cases in the 2040s of the three prefectures was 1.90 (95%CI: 1.35-2.38) times higher than that in the 2010s. These computational results suggest the need to manage ambulance services and medical resource allocation, including intervention for public awareness of heat illnesses. This issue will be important in other aging societies in near future.


Assuntos
Mudança Climática , Transtornos de Estresse por Calor , Humanos , Aquecimento Global , Temperatura Alta , Japão/epidemiologia , Morbidade
7.
Environ Sci Pollut Res Int ; 30(59): 123832-123842, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991619

RESUMO

Epidemiological studies have reported that the frequency of nuclear cataracts (NUCs) is high among the elderly and in tropical countries. Ultraviolet (UV) irradiation and lens temperature are considered as key physical contributors, although their precise quantification is difficult. The aim of this study is to investigate the association of NUC prevalence with UV irradiation and heat load. First, we assessed the lens temperature using thermodynamic modeling considering the thermophysiological response. We then conducted a multivariate linear regression analysis for the epidemiological analysis of NUC prevalence across five cities. A strong correlation was observed between NUC prevalence and the combined effects of UV irradiation and cumulative equivalent minutes at 43 °C (CEM43°C) derived from the computed lens temperature (adjusted R2 = 0.933, p < 0.0001). Heat load significantly contributed to the prevalence at 52%, surpassing the contributions of UV irradiation (31%) and the decline in DNA repair capacity in the lens (17%). These results suggested that both UV radiation and heat load are associated with NUC, with heat load contributing more. Our findings provided important implications for future interventions, particularly in the context of global warming.


Assuntos
Catarata , Raios Ultravioleta , Humanos , Idoso , Temperatura Alta , Prevalência , Cidades , Catarata/epidemiologia
8.
Front Public Health ; 11: 1225896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732093

RESUMO

Introduction: Limited information is available on the biological effects of whole-body exposure to quasi-millimeter waves (qMMW). The aim of the present study was to determine the intensity of exposure to increase body temperature and investigate whether thermoregulation, including changes in skin blood flow, is induced in rats under whole-body exposure to qMMW. Methods: The backs of conscious rats were extensively exposed to 28 GHz qMMW at absorbed power densities of 0, 122, and 237 W/m2 for 40 minutes. Temperature changes in three regions (dorsal and tail skin, and rectum) and blood flow in the dorsal and tail skin were measured simultaneously using fiber-optic probes. Results: Intensity-dependent temperature increases were observed in the dorsal skin and the rectum. In addition, skin blood flow was altered in the tail but not in the dorsum, accompanied by an increase in rectal temperature and resulting in an increase in tail skin temperature. Discussion: These findings suggest that whole-body exposure to qMMW drives thermoregulation to transport and dissipate heat generated on the exposed body surface. Despite the large differences in size and physiology between humans and rats, our findings may be helpful for discussing the operational health-effect thresholds in the standardization of international exposure guidelines.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Humanos , Animais , Ratos
9.
Vaccines (Basel) ; 11(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37766133

RESUMO

Multiple COVID-19 waves have been observed worldwide, with varying numbers of positive cases. Population-level immunity can partly explain a transient suppression of epidemic waves, including immunity acquired after vaccination strategies. In this study, we aimed to estimate population-level immunity in 47 Japanese prefectures during the three waves from April 2021 to September 2022. For each wave, characterized by the predominant variants, namely, Delta, Omicron, and BA.5, the estimated rates of population-level immunity in the 10-64-years age group, wherein the most positive cases were observed, were 20%, 35%, and 45%, respectively. The number of infected cases in the BA.5 wave was inversely associated with the vaccination rates for the second and third injections. We employed machine learning to replicate positive cases in three Japanese prefectures to validate the reliability of our model for population-level immunity. Using interpolation based on machine learning, we estimated the impact of behavioral factors and vaccination on the fifth wave of new positive cases that occurred during the Tokyo 2020 Olympic Games. Our computational results highlighted the critical role of population-level immunity, such as vaccination, in infection suppression. These findings underscore the importance of estimating and monitoring population-level immunity to predict the number of infected cases in future waves. Such estimations that combine numerical derivation and machine learning are of utmost significance for effective management of medical resources, including the vaccination strategy.

10.
Front Neurosci ; 17: 1145505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179562

RESUMO

Introduction: Contact electrical currents in humans stimulate peripheral nerves at frequencies of <100 kHz, producing sensations such as tingling. At frequencies above 100 kHz, heating becomes dominant, resulting in a sensation of warmth. When the current amplitude exceeds the threshold, the sensation results in discomfort or pain. In international guidelines and standards for human protection from electromagnetic fields, the limit for the contact current amplitude has been prescribed. Although the types of sensations produced by contact current at low frequencies, i.e., approximately 50-60 Hz, and the corresponding perception thresholds have been investigated, there is a lack of knowledge about those in the intermediate-frequency band-particularly from 100 kHz to 10 MHz. Methods: In this study, we investigated the current-perception threshold and types of sensations for 88 healthy adults (range: 20-79 years old) with a fingertip exposed to contact currents at 100 kHz, 300 kHz, 1 MHz, 3 MHz, and 10 MHz. Results: The current perception thresholds at frequencies ranging from 300 kHz to 10 MHz were 20-30% higher than those at 100 kHz (p < 0.001). In addition, a statistical analysis revealed that the perception thresholds were correlated with the age or finger circumference: older participants and those with larger finger circumferences exhibited higher thresholds. At frequencies of ≥300 kHz, the contact current mainly produced a warmth sensation, which differed from the tingling/pricking sensation produced by the current at 100 kHz. Discussion: These results indicate that there exists a transition of the produced sensations and their perception threshold between 100 kHz and 300 kHz. The findings of this study are useful for revising the international guidelines and standards for contact currents at intermediate frequencies. Clinical trial registration: https://center6.umin.ac.jp/cgi-open-bin/icdr_e/ctr_view.cgi?recptno=R000045660, identifier UMIN 000045213.

11.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36992217

RESUMO

Since the emergence of COVID-19, the forecasting of new daily positive cases and deaths has been one of the essential elements in policy setting and medical resource management worldwide. An essential factor in forecasting is the modeling of susceptible populations and vaccination effectiveness (VE) at the population level. Owing to the widespread viral transmission and wide vaccination campaign coverage, it becomes challenging to model the VE in an efficient and realistic manner, while also including hybrid immunity which is acquired through full vaccination combined with infection. Here, the VE model of hybrid immunity was developed based on an in vitro study and publicly available data. Computational replication of daily positive cases demonstrates a high consistency between the replicated and observed values when considering the effect of hybrid immunity. The estimated positive cases were relatively larger than the observed value without considering hybrid immunity. Replication of the daily positive cases and its comparison would provide useful information of immunity at the population level and thus serve as useful guidance for nationwide policy setting and vaccination strategies.

12.
Front Public Health ; 11: 1061135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875384

RESUMO

The number of patients with heat illness transported by ambulance has been gradually increasing due to global warming. In intense heat waves, it is crucial to accurately estimate the number of cases with heat illness for management of medical resources. Ambient temperature is an essential factor with respect to the number of patients with heat illness, although thermophysiological response is a more relevant factor with respect to causing symptoms. In this study, we computed daily maximum core temperature increase and daily total amount of sweating in a test subject using a large-scale, integrated computational method considering the time course of actual ambient conditions as input. The correlation between the number of transported people and their thermophysiological temperature is evaluated in addition to conventional ambient temperature. With the exception of one prefecture, which features a different Köppen climate classification, the number of transported people in the remaining prefectures, with a Köppen climate classification of Cfa, are well estimated using either ambient temperature or computed core temperature increase and daily amount of sweating. For estimation using ambient temperature, an additional two parameters were needed to obtain comparable accuracy. Even using ambient temperature, the number of transported people can be estimated if the parameters are carefully chosen. This finding is practically useful for the management of ambulance allocation on hot days as well as public enlightenment.


Assuntos
Transtornos de Estresse por Calor , Humanos , Japão , Temperatura , Clima
13.
J Urban Health ; 100(1): 29-39, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36445638

RESUMO

During epidemics, the estimation of the effective reproduction number (ERN) associated with infectious disease is a challenging topic for policy development and medical resource management. The emergence of new viral variants is common in widespread pandemics including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A simple approach is required toward an appropriate and timely policy decision for understanding the potential ERN of new variants is required for policy revision. We investigated time-averaged mobility at transit stations as a surrogate to correlate with the ERN using the data from three urban prefectures in Japan. The optimal time windows, i.e., latency and duration, for the mobility to relate with the ERN were investigated. The optimal latency and duration were 5-6 and 8 days, respectively (the Spearman's ρ was 0.109-0.512 in Tokyo, 0.365-0.607 in Osaka, and 0.317-0.631 in Aichi). The same linear correlation was confirmed in Singapore and London. The mobility-adjusted ERN of the Alpha variant was 15-30%, which was 20-40% higher than the original Wuhan strain in Osaka, Aichi, and London. Similarly, the mobility-adjusted ERN of the Delta variant was 20%-40% higher than that of the Wuhan strain in Osaka and Aichi. The proposed metric would be useful for the proper evaluation of the infectivity of different SARS-CoV-2 variants in terms of ERN as well as the design of the forecasting system.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cidades , Número Básico de Reprodução , Pandemias
14.
Vaccines (Basel) ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36366329

RESUMO

The variability of the COVID-19 vaccination effectiveness (VE) should be assessed with a resolution of a few days, assuming that the VE is influenced by public behavior and social activity. Here, the VE for the Omicron variants (BA.2 and BA.5) is numerically derived for Japan's population for the second and third vaccination doses. We then evaluated the daily VE variation due to social behavior from the daily data reports in Tokyo. The VE for the Omicron variants (BA.1, BA.2, and BA.5) are derived from the data of Japan and Tokyo with a computational approach. In addition, the effect of the different parameters regarding human behavior on VE was assessed using daily data in Tokyo. The individual VE for the Omicron BA.2 in Japan was 61% (95% CI: 57-65%) for the second dose of the vaccination from our computation, whereas that for the third dose was 86% (95% CI: 84-88%). The individual BA.5 VE for the second and third doses are 37% (95% CI: 33-40%) and 63% (95% CI: 61-65%). The reduction in the daily VE from the estimated value was closely correlated to the number of tweets related to social gatherings on Twitter. The number of tweets considered here would be one of the new candidates for VE evaluation and surveillance affecting the viral transmission.

15.
Comput Biol Med ; 149: 105986, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030722

RESUMO

Recently, a high number of daily positive COVID-19 cases have been reported in regions with relatively high vaccination rates; hence, booster vaccination has become necessary. In addition, infections caused by the different variants and correlated factors have not been discussed in depth. With large variabilities and different co-factors, it is difficult to use conventional mathematical models to forecast the incidence of COVID-19. Machine learning based on long short-term memory was applied to forecasting the time series of new daily positive cases (DPC), serious cases, hospitalized cases, and deaths. Data acquired from regions with high rates of vaccination, such as Israel, were blended with the current data of other regions in Japan such that the effect of vaccination was considered in efficient manner. The protection provided by symptomatic infection was also considered in terms of the population effectiveness of vaccination as well as the vaccination protection waning effect and ratio and infectivity of different viral variants. To represent changes in public behavior, public mobility and interactions through social media were also included in the analysis. Comparing the observed and estimated new DPC in Tel Aviv, Israel, the parameters characterizing vaccination effectiveness and the waning protection from infection were well estimated; the vaccination effectiveness of the second dose after 5 months and the third dose after two weeks from infection by the delta variant were 0.24 and 0.95, respectively. Using the extracted parameters regarding vaccination effectiveness, DPC in three major prefectures of Japan were replicated. The key factor influencing the prevention of COVID-19 transmission is the vaccination effectiveness at the population level, which considers the waning protection from vaccination rather than the percentage of fully vaccinated people. The threshold of the efficiency at the population level was estimated as 0.3 in Tel Aviv and 0.4 in Tokyo, Osaka, and Aichi. Moreover, a weighting scheme associated with infectivity results in more accurate forecasting by the infectivity model of viral variants. Results indicate that vaccination effectiveness and infectivity of viral variants are important factors in future forecasting of DPC. Moreover, this study demonstrate a feasible way to project the effect of vaccination using data obtained from other country.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitalização , Humanos , SARS-CoV-2 , Vacinação/métodos
16.
Comput Biol Med ; 146: 105548, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537221

RESUMO

BACKGROUND: In the summer of 2021, the Olympic Games were held in Tokyo during the state of emergency due to the spread of COVID-19 pandemic. New daily positive cases (DPC) increased before the Olympic Games, and then decreased a few weeks after the Games. However, several cofactors influencing DPC exist; consequently, careful consideration is needed for future international events during an epidemic. METHODS: The impact of the Olympic Games on new DPC were evaluated in the Tokyo, Osaka, and Aichi Prefectures using a well-trained and -evaluated long short-term memory (LSTM) network. In addition, we proposed a compensation method based on effective reproduction number (ERN) to assess the effect of the national holidays on the DPC. RESULTS: During the spread phase, the estimated DPC with LSTM was 30%-60% lower than that of the observed value, but was consistent with the compensated value of the ERN for the three prefectures. During the decay phase, the estimated DPC was consistent with the observed values. The timing of the decay coincided with achievement of a fully-vaccinated rate of 10%-15% of people aged <65 years. CONCLUSIONS: The up- and downsurge of the pandemic wave observed in July and September are likely attributable to high ERN during national holiday periods and to the vaccination effect, especially for people aged <65 years. The effect of national holidays in Tokyo was rather notable in Aichi and Osaka, which are distant from Tokyo. The effect of the Olympic Games on the spread and decay of the pandemic wave is neither dominant nor negligible due to the shifting of the national holiday dates to coincide with the Olympic Games.


Assuntos
COVID-19 , Esportes , COVID-19/epidemiologia , Humanos , Aprendizado de Máquina , Pandemias , Tóquio/epidemiologia
17.
Vaccines (Basel) ; 10(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335062

RESUMO

A resurgence of COVID-19-positive cases has been observed in many countries in the latter half of 2021. The primary reasons for this resurgence are the waning immunity of vaccination after the second dose of vaccination and the changes in public behavior due to temporal convergence. The vaccination effectiveness for the omicron and delta variants has been reported from some countries, but it is still unclear for several other regions worldwide. Here, we numerically derived the effectiveness of vaccination for infection protection in individuals and populations against viral variants for the entire Japanese population (126 million). The waning immunity of vaccination for the delta variant of Japanese individuals was 93.8% (95% CI: 93.1−94.6%) among individuals <65 years of age and 95.0% (95% CI: 95.6−96.9%) among individuals ≥65 years of age. We found that waning immunity of vaccination in individuals >65 years of age was lower than in those <65 years of age, which may be attributable to human behavior and a higher vaccination rate among individuals >65 years of age. From the reported data of 25,187 positive cases with confirmed omicron variant in Tokyo in January 2022, the effectiveness of vaccination was also estimated at 62.1% (95% CI: 48−66%) compared to that of the delta variant. Derived effectiveness of vaccination would be useful to discuss the vaccination strategy for the booster shot, as well as the status of herd immunity.

18.
Phys Med Biol ; 66(8)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33761473

RESUMO

International guidelines/standards for human protection from electromagnetic fields have been revised recently, especially for frequencies above 6 GHz where new wireless communication systems have been deployed. Above this frequency a new physical quantity 'absorbed/epithelial power density' has been adopted as a dose metric. Then, the permissible level of external field strength/power density is derived for practical assessment. In addition, a new physical quantity, fluence or absorbed energy density, is introduced for protection from brief pulses (especially for shorter than 10 s). These limits were explicitly designed to avoid excessive increases in tissue temperature, based on electromagnetic and thermal modeling studies but supported by experimental data where available. This paper reviews the studies on the computational modeling/dosimetry which are related to the revision of the guidelines/standards. The comparisons with experimental data as well as an analytic solution are also been presented. Future research needs and additional comments on the revision will also be mentioned.


Assuntos
Ondas de Rádio , Temperatura Corporal , Campos Eletromagnéticos/efeitos adversos , Humanos , Ondas de Rádio/efeitos adversos , Radiometria , Temperatura
19.
J Biomed Inform ; 117: 103743, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753268

RESUMO

Accurate forecasting of medical service requirements is an important big data problem that is crucial for resource management in critical times such as natural disasters and pandemics. With the global spread of coronavirus disease 2019 (COVID-19), several concerns have been raised regarding the ability of medical systems to handle sudden changes in the daily routines of healthcare providers. One significant problem is the management of ambulance dispatch and control during a pandemic. To help address this problem, we first analyze ambulance dispatch data records from April 2014 to August 2020 for Nagoya City, Japan. Significant changes were observed in the data during the pandemic, including the state of emergency (SoE) declared across Japan. In this study, we propose a deep learning framework based on recurrent neural networks to estimate the number of emergency ambulance dispatches (EADs) during a SoE. The fusion of data includes environmental factors, the localization data of mobile phone users, and the past history of EADs, thereby providing a general framework for knowledge discovery and better resource management. The results indicate that the proposed blend of training data can be used efficiently in a real-world estimation of EAD requirements during periods of high uncertainties such as pandemics.


Assuntos
Ambulâncias , COVID-19 , Serviços Médicos de Emergência , Descoberta do Conhecimento , Aprendizado Profundo , Recursos em Saúde , Humanos , Japão , Redes Neurais de Computação , Pandemias
20.
One Health ; 12: 100203, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33344745

RESUMO

In this study, we analyzed the spread and decay durations of the COVID-19 pandemic in several cities of China, England, Germany, and Japan, where the first wave has undergone decay. Differences in medical and health insurance systems, as well as in regional policies incommoded the comparison of the spread and decay in different cities and countries. The spread and decay durations in the cities of the four studied countries were reordered and calculated based on an asymmetric bell-shaped model. We acquired the values of the ambient temperature, absolute humidity, and population density to perform multivariable analysis. We found a significant correlation (p < 0.05) of the spread and decay durations with population density in the four analyzed countries. Specifically, spread duration showed a high correlation with population density and absolute humidity (p < 0.05), whereas decay duration demonstrated the highest correlation with population density, absolute humidity, and maximum temperature (p < 0.05). The effect of population density was almost nonexistent in China because of the implemented strict lockdown. Our findings will be useful in policy setting and governmental actions in the next pandemic, as well as in the next waves of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...