Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 11772, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817810

RESUMO

Atlantic bluefin tuna (Thunnus thynnus; ABFT) is one of the most iconic fish species in the world. Recently, after being very rare for more than half a century, large bluefin tunas have returned to Nordic waters in late summer and autumn, marking the return of the largest predatory fish in Nordic waters. By tagging 18 bluefin tunas with electronic tags (pop-up satellite archival tags), we show that bluefin tuna observed in Nordic waters undertake different migration routes, with individuals migrating into the western Atlantic Ocean, while others stay exclusively in the eastern Atlantic and enter the Mediterranean Sea to spawn. We additionally present evidence of possible skipped spawning inferred from behavioural analyses. In Nordic waters, ABFT are primarily using the upper water column, likely reflecting feeding activity. The results support the hypothesis that ABFT migrating to Nordic waters return to the same general feeding area within the region on an annual basis. These observations may have important implications for management because (1) tunas that come into Nordic waters might represent only a few year classes (as evidenced by a narrow size range), and thus may be particularly vulnerable to area-specific exploitation, and (2) challenge the assumption of consecutive spawning in adult Atlantic bluefin tuna, as used in current stock assessment models. Without careful management and limited exploitation of this part of the ABFT population, the species' return to Nordic waters could be short-lived.


Assuntos
Migração Animal , Atum , Animais , Oceano Atlântico , Mar Mediterrâneo , Estações do Ano
3.
Biol Lett ; 17(9): 20210346, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34493065

RESUMO

The European eel's singular spawning migration from European waters towards the Sargasso Sea remains elusive, including the early phase of migration at sea. During spawning migration, the movement of freshwater resident eels from river to sea has been thought to be irreversible. We report the first recorded incidents of eels returning to the river of origin after spending up to a year in the marine environment. After migrating to the Baltic Sea, 21% of the silver eels, tagged with acoustic transmitters, returned to the Narva River. Half returned 11-12 months after moving to the sea, with 15 km being the longest upstream movement. The returned eels spent up to 33 days in the river and migrated to the sea again. The fastest specimen migrated to the outlet of the Baltic Sea in 68 days after the second start-roughly 1300 km. The surprising occurrence of returning migrants has implications for sustainable management and protection of this critically endangered species.


Assuntos
Anguilla , Rios , Acústica , Migração Animal , Animais
4.
Ecol Evol ; 11(16): 11477-11490, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429934

RESUMO

Coexistence of ecotypes, genetically divergent population units, is a widespread phenomenon, potentially affecting ecosystem functioning and local food web stability. In coastal Skagerrak, Atlantic cod (Gadus morhua) occur as two such coexisting ecotypes. We applied a combination of acoustic telemetry, genotyping, and stable isotope analysis to 72 individuals to investigate movement ecology and food niche of putative local "Fjord" and putative oceanic "North Sea" ecotypes-thus named based on previous molecular studies. Genotyping and individual origin assignment suggested 41 individuals were Fjord and 31 were North Sea ecotypes. Both ecotypes were found throughout the fjord. Seven percent of Fjord ecotype individuals left the study system during the study while 42% of North Sea individuals left, potentially homing to natal spawning grounds. Home range sizes were similar for the two ecotypes but highly variable among individuals. Fjord ecotype cod had significantly higher δ13C and δ15N stable isotope values than North Sea ecotype cod, suggesting they exploited different food niches. The results suggest coexisting ecotypes may possess innate differences in feeding and movement ecologies and may thus fill different functional roles in marine ecosystems. This highlights the importance of conserving interconnected populations to ensure stable ecosystem functioning and food web structures.

5.
J Environ Manage ; 262: 110317, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250800

RESUMO

Fishways are commonly employed to improve river connectivity for fishes, but the extent to which they cater for natural phenotypic diversity has been insufficiently addressed. We measured differential upstream passage success of three wild brown trout (Salmo trutta) phenotypes (anadromous, freshwater-resident adult and parr-marked), encompassing a range of sizes and both sexes, at a Larinier superactive baffle fishway adjacent to a flow-gauging weir, using PIT telemetry (n = 160) and radio telemetry (n = 53, double tagged with PIT tags). Fish were captured and tagged downstream of the weir in the autumn pre-spawning period, 2017, in a tributary of the River Wear, England, where over 95% of tributary spawning habitat was available upstream of the weir. Of 57 trout that approached the weir-fishway complex, freshwater-resident adult and parr-marked phenotypes were less successful in passing than anadromous trout (25%, 36%, and 63% passage efficiency, respectively). Seventy-one percent of anadromous trout that passed upstream traversed the weir directly. Although the fishway facilitated upstream passage, it was poor in attracting fish of all phenotypes (overall attraction efficiency, 22.8%). A higher proportion (68.2%) of parr-marked trout that approached the weir were male and included sexually mature individuals, compared with that of freshwater-resident (37.8%) and anadromous trout (37.0%). The greater passage success of anadromous trout was likely due to their greater size and locomotory performance compared to the other phenotypes. Barriers and fishways can act as selection filters, likely the case in this study, and greater consideration needs to be given to supporting natural diversity in populations when proposing fishway designs to mitigate river connectivity problems.


Assuntos
Rios , Truta , Animais , Ecossistema , Inglaterra , Feminino , Masculino , Fenótipo
6.
Sci Rep ; 9(1): 13468, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530837

RESUMO

Spring migrating sea trout juveniles can be classified as parr, pre-smolt or smolt based on body morphology and osmoregulatory capacity. In this respect, parr are assumed to be less prepared for a marine life and to have lower survival at sea than pre-smolts and smolts. However, the behaviour and survival of these trout phenotypes upon entering the sea is not well known. Using passive integrated transponder telemetry, this study found that the return rate from the sea to the natal river was higher for parr compared to pre-smolts and smolts. Additionally, trout classified as parr generally migrated earlier to the sea and a larger proportion returned to the river after less than one year at sea. The daily mortality rate at sea was comparable among the different phenotypes of trout, suggesting that the higher proportion of returning parr to the river was linked to their shorter duration at sea. These results provide evidence of different life-history strategies for seaward-migrating juvenile sea trout, ultimately affecting their return rate to the natal river. Investigations failing to consider downstream migrating parr and pre-smolts risks neglecting a large part of the anadromous population and may result in inaccurate assessments of sea trout stocks in rivers.


Assuntos
Estágios do Ciclo de Vida , Dinâmica Populacional , Truta , Migração Animal , Animais , Oceanos e Mares , Fenótipo , Tecnologia de Sensoriamento Remoto , Rios , Truta/crescimento & desenvolvimento
7.
J Fish Biol ; 94(5): 745-751, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30847919

RESUMO

Juvenile salmonids experience high mortality when negotiating lentic waters during their downstream migration to the sea. The development of artificial lakes and wetlands in streams has become a widely used management tool to reduce nutrient load to coastal areas. Such wetlands may threaten anadromous populations. In this study we quantify net ground speed of downstream migrating brown trout Salmo trutta smolts in equally long stream and lake sections in a Danish lowland stream and artificial lake. This was done by passive integrated transponder telemetry in 2016 and 2017. Mean net ground speed in the stream section was 36.58 and 0.8 km day-1 in the lake section. This decrease of net ground speed through the lake may lead to prolonged exposure to predators and probably contributes to high mortalities threatening anadromous populations.


Assuntos
Migração Animal , Truta/fisiologia , Animais , Lagos , Rios , Telemetria , Fatores de Tempo , Truta/crescimento & desenvolvimento
8.
Sci Rep ; 9(1): 2422, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787384

RESUMO

Kelts - individuals of anadromous fish species which have successfully spawned and may return to sea to repeat the cycle - are perhaps the least studied life stage of iteroparous fish species. To date, our understanding of what makes them successful in their return migration to sea is limited. We investigated the relationship between three physiological parameters (baseline cortisol, baseline glucose and low molecular weight antioxidants) and the timing and success of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) kelt migration. To do so, we combined blood samples obtained within 3 minutes of capture and acoustic telemetry to track 66 salmon and 72 sea trout as they migrated out of rivers, into fjords and out at sea. We show that baseline cortisol may be a good predictor of migration success. Individuals with high baseline cortisol levels exited the river earlier but were less likely to successfully reach the sea. Similar relationships were not observed with glucose or antioxidants. We provide the first evidence to support the role of physiological status in migration success in Atlantic salmon and sea trout kelts. Our findings contribute to our understanding of the relationship between physiology and fitness in wild animals. Further, we suggest that migration timing is a trade-off between stress and readiness to migrate.


Assuntos
Hidrocortisona/sangue , Estágios do Ciclo de Vida/fisiologia , Salmo salar/fisiologia , Truta/fisiologia , Acústica , Migração Animal/fisiologia , Animais , Antioxidantes/metabolismo , Doenças dos Peixes/sangue , Glucose/metabolismo , Rios , Salmo salar/sangue , Truta/sangue
9.
Conserv Physiol ; 4(1): cov055, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382465

RESUMO

Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in several studies. A positive relationship between aerobic metabolic scope and animal activity would be consistent with the OCLTT but has rarely been tested. Moreover, the performance model and the allocation model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify individual in situ activity levels. Metabolic rates were measured using intermittent flow respirometry, whereas the activity assay involved high-resolution telemetry providing positions every 30 s over 12 days. We found no correlation between individual metabolic traits and activity, whereas individual fineness ratio correlated with activity. Independent of body length, and consistent with physics theory, slender fish maintained faster mean and maximal swimming speeds, but this variation did not result in a larger area (in square metres) explored per 24 h. Testing assumptions and predictions of recent conceptual models, our study indicates that individual metabolism is not a strong determinant of animal activity, in contrast to individual morphology, which is correlated with in situ activity patterns.

10.
Physiol Biochem Zool ; 87(2): 334-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642550

RESUMO

Partial migration is common in many animal taxa; however, the physiological variation underpinning migration strategies remains poorly understood. Among salmonid fishes, brown trout (Salmo trutta) is one of the species that exhibits the most complex variation in sympatric migration strategies, expressed as a migration continuum, ranging from residency to anadromy. In looking at brown trout, our objective with this study was to test the hypothesis that variation in migration strategies is underpinned by physiological variation. Prior to migration, physiological samples were taken from fish in the stream and then released at the capture site. Using telemetry, we subsequently classified fish as resident, short-distance migrants (potamodromous), or long-distance migrants (potentially anadromous). Our results revealed that fish belonging to the resident strategy differed from those exhibiting any of the two migratory strategies. Gill Na,K-ATPase activity, condition factor, and indicators of nutritional status suggested that trout from the two migratory strategies were smoltified and energetically depleted before leaving the stream, compared to those in the resident strategy. The trout belonging to the two migratory strategies were generally similar; however, lower triacylglycerides levels in the short-distance migrants indicated that they were more lipid depleted prior to migration compared with the long-distance migrants. In the context of migration cost, we suggest that additional lipid depletion makes migrants more inclined to terminate migration at the first given feeding opportunity, whereas individuals that are less lipid depleted will migrate farther. Collectively, our data suggest that the energetic state of individual fish provides a possible mechanism underpinning the migration continuum in brown trout.


Assuntos
Migração Animal/fisiologia , Composição Corporal , Metabolismo Energético , Estado Nutricional , Truta/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dinamarca , Rios
11.
BMC Genet ; 9: 12, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18230136

RESUMO

BACKGROUND: Winter migration of immature brown trout (Salmo trutta) into freshwater rivers has been hypothesized to result from physiologically stressful combinations of high salinity and low temperature in the sea. RESULTS: We sampled brown trout from two Danish populations entering different saline conditions and quantified expression of the hsp70 and Na/K-ATPases alpha 1b genes following acclimation to freshwater and full-strength seawater at 2 degrees C and 10 degrees C. An interaction effect of low temperature and high salinity on expression of both hsp70 and Na/K-ATPase alpha 1b was found in trout from the river entering high saline conditions, while a temperature independent up-regulation of both genes in full-strength seawater was found for trout entering marine conditions with lower salinities. CONCLUSION: Overall our results support the hypothesis that physiologically stressful conditions in the sea drive sea-run brown trout into freshwater rivers in winter. However, our results also demonstrate intra-specific differences in expression of important stress and osmoregulative genes most likely reflecting adaptive differences between trout populations on a regional scale, thus strongly suggesting local adaptations driven by the local marine environment.


Assuntos
Aclimatação , Migração Animal , Salinidade , Truta/genética , Animais , Água Doce , Variação Genética , Brânquias/enzimologia , Proteínas de Choque Térmico HSP70/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...