Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Dev ; 26(21): 1566-1577, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28795648

RESUMO

The derivation of functional cardiomyocytes (CMs) from human embryonic stem cells (hESCs) represents a unique way of studying human cardiogenesis, including the development of CM subtypes. In this study, we investigated the development and organization of hESC-derived cardiomyocytes (hESC-CMs) and examined how the expression levels of CM subtypes correspond to human in vivo cardiogenesis. Beating clusters were used to determine cardiac differentiation, which was evaluated by the expression of cardiac genes GATA4 and TNNT2 and subcellular localization of GATA4 and NKX2.5. Sharp electrode recordings to determine action potentials (APs) further revealed spatial organization of intracluster CM subtypes (ie, complex clusters). Nodal-, atrial-, and ventricular-like AP morphologies were detected within distinct regions of complex clusters. The ability of different CM subtypes to self-organize was documented by immunohistochemical analyses and a differential spatial expression of ß-III tubulin, myosin light chain 2v (MLC-2V), and α-smooth muscle actin (α-SMA). Furthermore, all hESC-CM subtypes formed expressed primary cilia, which are known to coordinate cellular signaling pathways during cardiomyogenesis and heart development. This study expands the foundation for studying regulatory pathways for spatial and temporal CM differentiation during human cardiogenesis.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/citologia , Actinas/genética , Actinas/metabolismo , Potenciais de Ação , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Humanos , Miócitos Cardíacos/classificação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Troponina T/genética , Troponina T/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Spine (Phila Pa 1976) ; 42(12): E702-E707, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27755493

RESUMO

STUDY DESIGN: Mutation analysis of a candidate disease gene in a cohort of patients with moderate to severe Adolescent idiopathic scoliosis (AIS). OBJECTIVE: To investigate if damaging mutations in the planar cell polarity gene VANGL1 could be identified in AIS patients. SUMMARY OF BACKGROUND DATA: AIS is a spinal deformity which occurs in 1% to 3% of the population. The cause of AIS is often unknown, but genetic factors are important in the etiology. Rare variants in genes encoding regulators of WNT/planar cell polarity (PCP) signaling were recently identified in AIS patients. METHODS: We analyzed the coding region of the VANGL1 gene for mutations using Sanger sequencing in 157 unrelated patients with moderate to severe AIS. The frequency of mutations in the patient cohort was compared with their frequency in a large cohort of controls. Functional effect of mutations were predicted in silico and analyzed in vitro by transfection of normal and mutant recombinant VANGL1 protein in Madin-Darby Canine Kidney (MDCK) cells. Cellular localization of recombinant proteins was analyzed by immunofluorescence microscopy analysis. RESULTS: In the patient cohort, we identified two rare missense mutations in VANGL1, encoding a receptor involved in WNT/PCP signaling. The mutations, p.I136N and p.F440 V, are very rare in the normal population. Both mutations are predicted to be damaging, and to affect evolutionary conserved amino acid residues of VANGL1. Functional analysis in MDCK cells showed that the mutations abolished the normal translocation of VANGL1 to the cell membrane. CONCLUSION: Our data support that mutations in genes involved in WNT/PCP signaling may be associated with AIS, but replication in other patient cohorts and further analysis of the role of WNT/PCP signaling in AIS is needed. LEVEL OF EVIDENCE: 4.


Assuntos
Proteínas de Transporte/genética , Polaridade Celular/genética , Proteínas de Membrana/genética , Escoliose/genética , Adolescente , Adulto , Idoso , Células Cultivadas , Heterozigoto , Humanos , Mutação de Sentido Incorreto , Via de Sinalização Wnt/genética
3.
Organogenesis ; 10(1): 108-25, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24345806

RESUMO

Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.


Assuntos
Cílios , Coração/embriologia , Organogênese/fisiologia , Transdução de Sinais , Humanos , Microscopia Eletrônica de Varredura , Fator de Crescimento Transformador beta1/metabolismo
4.
Cell Rep ; 3(6): 1806-14, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23746451

RESUMO

Transforming growth factor ß (TGF-ß) signaling is regulated by clathrin-dependent endocytosis (CDE) for the control of cellular processes during development and in tissue homeostasis. The primary cilium coordinates several signaling pathways, and the pocket surrounding the base and proximal part of the cilium is a site for CDE. We report here that TGF-ß receptors localize to the ciliary tip and endocytic vesicles at the ciliary base in fibroblasts and that TGF-ß stimulation increases receptor localization and activation of SMAD2/3 and ERK1/2 at the ciliary base. Inhibition of CDE reduced TGF-ß-mediated signaling at the cilium, and TGF-ß signaling and CDE activity are reduced at stunted primary cilia in Tg737orpk fibroblasts. Similarly, TGF-ß signaling during cardiomyogenesis correlated with accumulation of TGF-ß receptors and activation of SMAD2/3 at the ciliary base. Our results indicate that the primary cilium regulates TGF-ß signaling and that the ciliary pocket is a compartment for CDE-dependent regulation of signal transduction.


Assuntos
Cílios/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Diferenciação Celular/fisiologia , Endocitose/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA