Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116243, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522288

RESUMO

Analysis of microplastics in the environment requires polymer characterization as a confirmation step for suspected microplastic particles found in a sample. Material characterization is costly and can take a long time per particle. When microplastic particle counts are high, many researchers cannot characterize every particle in their sample due to time or monetary constraints. Moreover, characterizing every particle in samples with high plastic particle counts is unnecessary for describing the sample properties. We propose an a priori approach to determine the number of suspected microplastic particles in a sample that should be randomly subsampled for characterization to accurately assess the polymer distribution in the environmental sample. The proposed equation is well-founded in statistics literature and was validated using published microplastic data and simulations for typical microplastic subsampling routines. We report values from the whole equation but also derive a simple way to calculate the necessary particle count for samples or subsamples by taking the error to the power of negative two. Assuming an error of 0.05 (5 %) with a confidence interval of 95 %, an unknown expected proportion, and a sample with many particles (> 100k), the minimum number of particles in a subsample should be 386 particles to accurately characterize the polymer distribution of the sample, given the particles are randomly characterized from the full population of suspected particles. Extending this equation to simultaneously estimate polymer, color, size, and morphology distributions reveals more particles (620) would be needed in the subsample to achieve the same high absolute error threshold for all properties. The above proposal for minimum subsample size also applies to the minimum count that should be present in samples to accurately characterize particle type presence and diversity in a given environmental compartment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Environ Int ; 186: 108504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537584

RESUMO

Insufficient data on nano- and microplastics (NMP) hinder robust evaluation of their potential health risks. Methodological disparities and the absence of established toxicity thresholds impede the comparability and practical application of research findings. The diverse attributes of NMP, such as variations in sizes, shapes, and compositions, complicate human health risk assessment. Although probability density functions (PDFs) show promise in capturing this diversity, their integration into risk assessment frameworks is limited. Physiologically based kinetic (PBK) models offer a potential solution to bridge the gap between external exposure and internal dosimetry for risk evaluation. However, the heterogeneity of NMP poses challenges for accurate biodistribution modeling. A literature review, encompassing both experimental and modeling studies, was conducted to examine biodistribution studies of monodisperse micro- and nanoparticles. The literature search in PubMed and Scopus databases yielded 39 studies that met the inclusion criteria. Evaluation criteria were adapted from previous Quality Assurance and Quality Control (QA-QC) studies, best practice guidelines from WHO (2010), OECD guidance (2021), and additional criteria specific to NMP risk assessment. Subsequently, a conceptual framework for a comprehensive NMP-PBK model was developed, addressing the multidimensionality of NMP particles. Parameters for an NMP-PBK model are presented. QA-QC evaluations revealed that most experimental studies scored relatively well (>0) in particle characterizations and environmental settings but fell short in criteria application for biodistribution modeling. The evaluation of modeling studies revealed that information regarding the model type and allometric scaling requires improvement. Three potential applications of PDFs in PBK modeling of NMP are identified: capturing the multidimensionality of the NMP continuum, quantifying the probabilistic definition of external exposure, and calculating the bio-accessibility fraction of NMP in the human body. A framework for an NMP-PBK model is proposed, integrating PDFs to enhance the assessment of NMP's impact on human health.


Assuntos
Exposição Ambiental , Microplásticos , Nanopartículas , Medição de Risco , Humanos , Microplásticos/análise , Distribuição Tecidual
3.
J Hazard Mater ; 467: 133732, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350316

RESUMO

The risk characterization of microplastics (MP) in soil is challenging due to the non-alignment of existing exposure and effect data. Therefore, we applied data alignment methods to assess the risks of MP in soils subject to different sources of MP pollution. Our findings reveal variations in MP characteristics among sources, emphasizing the need for source-specific alignments. To assess the reliability of the data, we applied Quality Assurance/Quality Control (QA/QC) screening tools. Risk assessment was carried out probabilistically, considering uncertainties in data alignments and effect thresholds. The Hazardous Concentrations for 5% (HC5) of the species were significantly higher compared to earlier studies and ranged between 4.0 × 107 and 2.3 × 108 particles (1-5000 µm)/kg of dry soil for different MP sources and ecologically relevant metrics. The highest risk was calculated for soils with MP entering via diffuse and unspecified local sources, i.e., "background pollution". However, the source with the highest proportion of high-risk values was sewage, followed by background pollution and mulching. Notably, locations exceeding the risk threshold obtained low scores in the QA/QC assessment. No risks were observed for soils with compost. To improve future risk assessments, we advise to primarily test environmentally relevant MP mixtures and adhere to strict quality criteria.

4.
Environ Sci Technol ; 57(48): 19430-19441, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992256

RESUMO

Microplastics require a risk assessment framework that takes their multidimensionality into account while exclusively considering robust data. Therefore, effect tests should use a diverse, environmentally relevant microplastic (ERMP) standard material that adheres to high-quality requirements. In this study, we provide chronic dose-effect relationships and effect thresholds for 16 benthic species exposed to ERMP. The ERMP was created from plastic items collected from natural sources and cryogenically milled to represent the diversity of microplastics. The test design met 20 previously published quality assurance and quality control criteria. Adverse effect thresholds (EC10) were determined at ERMP concentrations of 0.11 ± 0.17% sediment dry weight (Gammarus pulex, growth), 0.49 ± 0.68% sediment dry weight (Lumbriculus variegatus, growth), and 1.90 ± 1.08% sediment dry weight (L. variegatus, reproduction). A positive effect of microplastics, such as decreased mortality, was observed for Cerastoderma edule (EC10 = 0.021 ± 0.027% sediment dry weight) and Sphaerium corneum (EC10 = 7.67 ± 3.41% sediment dry weight), respectively. Several of these laboratory-based single-species effect thresholds for ERMP occurred at concentrations lower than those found in the environment. For other species, no significant effects were detected up to an ERMP dose of 10% dry weight.


Assuntos
Oligoquetos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Sedimentos Geológicos
5.
Microplast nanoplast ; 3(1): 24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920865

RESUMO

Plastics pollution research attracts scientists from diverse disciplines. Many Early Career Researchers (ECRs) are drawn to this field to investigate and subsequently mitigate the negative impacts of plastics. Solving the multi-faceted plastic problem will always require breakthroughs across all levels of science disciplinarity, which supports interdisciplinary discoveries and underpins transdisciplinary solutions. In this context, ECRs have the opportunity to work across scientific discipline boundaries and connect with different stakeholders, including industry, policymakers and the public. To fully realize their potential, ECRs need to develop strong communication and project management skills to be able to effectively interface with academic peers and non-academic stakeholders. At the end of their formal education, many ECRs will choose to leave academia and pursue a career in private industry, government, research institutes or non-governmental organizations (NGOs). Here we give perspectives on how ECRs can develop the skills to tackle the challenges and opportunities of this transdisciplinary research field and how these skills can be transferred to different working sectors. We also explore how advisors can support an ECRs' growth through inclusive leadership and coaching. We further consider the roles each party may play in developing ECRs into mature scientists by helping them build a strong foundation, while also critically assessing problems in an interdisciplinary and transdisciplinary context. We hope these concepts can be useful in fostering the development of the next generation of plastics pollution researchers so they can address this global challenge more effectively.

6.
Environ Sci Technol ; 57(37): 14015-14023, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37683039

RESUMO

The effects and risks of microplastics correlate with three-dimensional (3D) properties, such as the volume and surface area of the biologically accessible fraction of the diverse particle mixtures as they occur in nature. However, these 3D parameters are difficult to estimate because measurement methods for spectroscopic and visible light image analysis yield data in only two dimensions (2D). The best-existing 2D to 3D conversion models require calibration for each new set of particles, which is labor-intensive. Here we introduce a new model that does not require calibration and compare its performance with existing models, including calibration-based ones. For the evaluation, we developed a new method in which the volumes of environmentally relevant microplastic mixtures are estimated in one go instead of on a cumbersome particle-by-particle basis. With this, the new Barchiesi model can be seen as the most universal. The new model can be implemented in software used for the analysis of infrared spectroscopy and visual light image analysis data and is expected to increase the accuracy of risk assessments based on particle volumes and surface areas as toxicologically relevant metrics.


Assuntos
Microplásticos , Plásticos , Benchmarking , Calibragem , Luz
7.
Environ Sci Technol ; 57(31): 11452-11464, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37504896

RESUMO

The transfer kinetics of plastic-associated chemicals during intestinal digestive processes is unknown. Here, we assessed whether digestive processes affect chemical exchange kinetics on microplastics, using an in vitro gut fluid digestive model mimicking the human upper intestinal tract. Chemical exchange kinetics of microplastics were measured for 10 polychlorinated biphenyls (PCBs) as proxies for the broad class of hydrophobic organic chemicals. Following earlier studies, olive oil was used as a proxy for digestible food, under high and low digestive enzyme activities. The micelle-water and oil-water partition coefficients of the 10 PCBs were also determined to evaluate the relative contribution of each gut component to sorb PCBs. A new biphasic and reversible chemical exchange model, which included the digestion process, fitted well to the empirical data. We demonstrate that the digestive processes that break down contaminated food can lead to a substantial increase in chemical concentration in microplastics by a factor of 10-20, thereby reducing the overall chemical bioavailability in the gastrointestinal tract when compared to a scenario without microplastics. Higher enzyme activities result in more chemicals being released by the digested food, thereby resulting in higher chemical concentrations in the microplastics. While the model-calibrated kinetic parameters are specific to the studied scenario, we argue that the mechanism of the reduced bioavailability of chemicals and the modeling tool developed have generic relevance. These digestive processes should be considered when assessing the risks of microplastics to humans and also biomagnification in aquatic food webs.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/química , Bifenilos Policlorados/análise , Disponibilidade Biológica , Poluentes Químicos da Água/análise , Água
8.
J Hazard Mater ; 458: 131984, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421860

RESUMO

Beaches are known as hotspots for the accumulation of plastic debris and are widely used for monitoring marine litter on a global scale. However, there is a significant knowledge gap regarding temporal trends in marine plastic pollution. Moreover, existing studies on beach plastics and popular monitoring protocols only provide count data. Consequently, it is not possible to monitor marine litter based on weights, which hampers the further application of beach plastic data. To address these gaps, we conducted an analysis of spatial and temporal trends in plastic abundance and composition using OSPAR beach litter monitoring data from 2001 to 2020. We established size and weight ranges for 75 (macro-)plastic categories to estimate the total plastic weight, enabling us to investigate plastic compositions. While the amount of plastic litter exhibits significant spatial variation, most individual beaches displayed notable temporal trends. The spatial variation in composition is primarily attributed to differences in total plastic abundance. We describe the compositions of beach plastics using generic probability density functions (PDFs) for item size and weight. Our trend analysis, method for estimating plastic weight from count data, and PDFs for beached plastic debris represent novel contributions to the field of plastic pollution science.

9.
Environ Pollut ; 325: 121445, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924914

RESUMO

The Laurentian Great Lakes represent important and iconic ecosystems. Microplastic pollution has become a major problem among other anthropogenic stressors in these lakes. There is a need for policy development, however, assessing the risks of microplastics is complicated due to the uncertainty and poor quality of the data and incompatibility of exposure and effect data for microplastics with different properties. Here we provide a prospective probabilistic risk assessment for Great Lakes sediments and surface waters that corrects for the misalignment between exposure and effect data, accounts for variability due to sample volume when using trawl samples, for the random spatiotemporal variability of exposure data, for uncertainty in data quality (QA/QC), in the slope of the power law used to rescale the data, and in the HC5 threshold effect concentration obtained from Species Sensitivity Distributions (SSDs). We rank the lakes in order of the increasing likelihood of risks from microplastics, for pelagic and benthic exposures. A lake-wide risk, i.e. where each location exceeds the risk limit, is not found for any of the lakes. However, the probability of a risk from food dilution occurring in parts of the lakes is 13-15% of the benthic exposures in Lakes Erie and Huron, and 8.3-10.3% of the pelagic exposures in Lake Michigan, Lake Huron, Lake Superior, and Lake Erie, and 24% of the pelagic exposures in Lake Ontario. To reduce the identified uncertainties, we recommend that future research focuses on characterizing and quantifying environmentally relevant microplastic (ERMP) over a wider size range (ideally 1-5000 µm) so that probability density functions (PDFs) can be better calibrated for different habitats. Toxicity effect testing should use a similarly wide range of sizes and other ERMP characteristics so that complex data alignments can be minimized and assumptions regarding ecologically relevant dose metrics (ERMs) can be validated.


Assuntos
Microplásticos , Poluentes Químicos da Água , Lagos , Plásticos , Ecossistema , Estudos Prospectivos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Probabilidade , Great Lakes Region
10.
Mar Environ Res ; 183: 105804, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36410161

RESUMO

In Europe, policy frameworks demand the monitoring of microplastics in marine sediments. Here we provide a monitoring and data analysis method for microplastic particles designed to be used in the context of Marine Strategy Framework Directive (MSFD) and OSPAR policy frameworks. Microplastics were analysed in marine sediments at four different locations in Dutch coastal and transitional waters using replicate sampling to investigate micro-spatial variation. Particle size distribution followed a power law with slope 3.76. Thirteen polymers were identified, with their composition varying between sediments near densely populated West coast areas versus the more rural Wadden Sea area. We quantify differences in the micro-spatial variation of microplastic concentrations between locations using the relative standard error of the mean (RSEM). This metric provides an opportunity to optimize the sensitivity of trend detection in microplastic monitoring networks by selecting locations with relatively low micro-spatial variation. We provide a method to optimize the number of replicate samples for a given location using its relationship with the RSEM. Two replicate samples appear to be cost-effective for relatively homogenous locations, whereas more heterogenous locations require four replicates.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Análise de Dados
11.
J Hazard Mater ; 441: 129814, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075174

RESUMO

Determining the risks of microplastics is difficult because data is of variable quality and cannot be compared. Although sediments are important sinks for microplastics, no holistic risk assessment framework is available for this compartment. Here we assess the risks of microplastics in freshwater sediments worldwide, using strict quality criteria and alignment methods. Published exposure data were screened for quality using new criteria for microplastics in sediment and were rescaled to the standard 1-5000 µm microplastic size range. Threshold effect data were also screened for quality and were aligned to account for the polydispersity of environmental microplastics and for their bioaccessible fraction. Risks were characterized for effects triggered by food dilution or translocation, using ingested particle volume and surface area as ecologically relevant metrics, respectively. Based on species sensitivity distributions, we determined Hazardous Concentrations for 5% of the species (HC5, with 95% CI) of 4.9 × 109 (6.6 × 107 - 1.9 × 1011) and 1.1 × 1010 (3.2 × 108 - 4.0 × 1011) particles / kg sediment dry weight, for food dilution and translocation, respectively. For all locations considered, exposure concentrations were either below or in the margin of uncertainty of the HC5 values. We conclude that risks from microplastics to benthic communities cannot be excluded at current concentrations in sediments worldwide.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água Doce , Sedimentos Geológicos , Microplásticos/toxicidade , Plásticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Environ Sci Technol ; 56(22): 15192-15206, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240263

RESUMO

To fully understand the potential ecological and human health risks from nanoplastics and microplastics (NMPs) in the environment, it is critical to make accurate measurements. Similar to past research on the toxicology of engineered nanomaterials, a broad range of measurement artifacts and biases are possible when testing their potential toxicity. For example, antimicrobials and surfactants may be present in commercially available NMP dispersions, and these compounds may account for toxicity observed instead of being caused by exposure to the NMP particles. Therefore, control measurements are needed to assess potential artifacts, and revisions to the protocol may be needed to eliminate or reduce the artifacts. In this paper, we comprehensively review and suggest a next generation of control experiments to identify measurement artifacts and biases that can occur while performing NMP toxicity experiments. This review covers the broad range of potential NMP toxicological experiments, such as in vitro studies with a single cell type or complex 3-D tissue constructs, in vivo mammalian studies, and ecotoxicity experiments testing pelagic, sediment, and soil organisms. Incorporation of these control experiments can reduce the likelihood of false positive and false negative results and more accurately elucidate the potential ecological and human health risks of NMPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Artefatos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Mamíferos
13.
Environ Sci Technol ; 56(22): 15552-15562, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305282

RESUMO

Current methods of characterizing plastic debris use arbitrary, predetermined categorizations and assume that the properties of particles are independent. Here we introduce Gaussian mixture models (GMM), a technique suitable for describing non-normal multivariate distributions, as a method to identify mutually exclusive subsets of floating macroplastic and microplastic particles (latent class analysis) based on statistically defensible categories. Length, width, height and polymer type of 6,942 particles and items from the Atlantic Ocean were measured using infrared spectroscopy and image analysis. GMM revealed six underlying normal distributions based on length and width; two within each of the lines, films, and fragments categories. These classes differed significantly in polymer types. The results further showed that smaller films and fragments had a higher correlation between length and width, indicating that they were about the same size in two dimensions. In contrast, larger films and fragments showed low correlations of height with length and width. This demonstrates that larger particles show greater variability in shape and thus plastic fragmentation is associated with particle rounding. These results offer important opportunities for refinement of risk assessment and for modeling the fragmentation and distribution of plastic in the ocean. They further illustrate that GMM is a useful method to map ocean plastics, with advantages over approaches that use arbitrary categorizations and assume size independence or normal distributions.


Assuntos
Plásticos , Poluentes Químicos da Água , Distribuição Normal , Monitoramento Ambiental/métodos , Oceano Atlântico , Polímeros , Poluentes Químicos da Água/análise
14.
Microplast nanoplast ; 2(1): 12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634037

RESUMO

Microplastics have been documented in drinking water, but their effects on human health from ingestion, or the concentrations at which those effects begin to manifest, are not established. Here, we report on the outcome of a virtual expert workshop conducted between October 2020 and October 2021 in which a comprehensive review of mammalian hazard studies was conducted. A key objective of this assessment was to evaluate the feasibility and confidence in deriving a human health-based threshold value to inform development of the State of California's monitoring and management strategy for microplastics in drinking water. A tiered approach was adopted to evaluate the quality and reliability of studies identified from a review of the peer-reviewed scientific literature. A total of 41 in vitro and 31 in vivo studies using mammals were identified and subjected to a Tier 1 screening and prioritization exercise, which was based on an evaluation of how each of the studies addressed various quality criteria. Prioritized studies were identified largely based on their application and reporting of dose-response relationships. Given that methods for extrapolating between in vitro and in vivo systems are currently lacking, only oral exposure in vivo studies were identified as fit-for-purpose within the context of this workshop. Twelve mammalian toxicity studies were prioritized and subjected to a Tier 2 qualitative evaluation by external experts. Of the 12 studies, 7 report adverse effects on male and female reproductive systems, while 5 reported effects on various other physiological endpoints. It is notable that the majority of studies (83%) subjected to Tier 2 evaluation report results from exposure to a single polymer type (polystyrene spheres), representing a size range of 0.040 to 20 µm. No single study met all desired quality criteria, but collectively toxicological effects with respect to biomarkers of inflammation and oxidative stress represented a consistent trend. While it was possible to derive a conservative screening level to inform monitoring activities, it was not possible to extrapolate a human-health-based threshold value for microplastics, which is largely due to concerns regarding the relative quality and reliability of current data, but also due to the inability to extrapolate data from studies using monodisperse plastic particles, such as polystyrene spheres to an environmentally relevant exposure of microplastics. Nevertheless, a conservative screening level value was used to estimate a volume of drinking water (1000 L) that could be used to support monitoring activities and improve our overall understanding of exposure in California's drinking water. In order to increase confidence in our ability to derive a human-health-based threshold value in the future, several research recommendations are provided, with an emphasis towards strengthening how toxicity studies should be conducted in the future and an improved understanding of human exposure to microplastics, insights critically important to better inform future risk assessments. Supplementary Information: The online version contains supplementary material available at 10.1186/s43591-022-00030-6.

15.
Environ Pollut ; 294: 118622, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871644

RESUMO

Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R2 = 0.868-0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.


Assuntos
Biofilmes , Daphnia , Microplásticos , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Microplásticos/análise , Poluentes Químicos da Água/análise
16.
Environ Sci Technol ; 55(14): 9916-9925, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34236184

RESUMO

Microplastic particles can be deposited to sediments and subsequently ingested by benthic organisms. It is unknown to what extent ingestion of microplastic is taxon-specific or whether taxa can be selective toward certain types of microplastics. Here, we used state-of-the-art automated micro-Fourier-transform infrared (µFTIR) imaging and attenuated total reflectance FTIR spectroscopy to determine small-size (20-500 µm) and large-size (500-5000 µm) microplastic particles in sediments and a range of benthic invertebrate species sampled simultaneously from the Dommel River in the Netherlands. Microplastic number concentrations differed across taxa at the same locations, demonstrating taxon-specific uptake, whereas size distributions were the same across sediments and taxa. At the site with the highest concentration, microplastic occupied up to 4.0% of the gut volume of Asellidae. Particle shape distributions were often not statistically different between sediments and taxa, except for Astacidea at one of the locations where the proportion of particles with a length to width ratio >3 (i.e., fibers) was twice as high in sediments than in Astacidea. Acrylates/polyurethane/varnish was predominately found in sediments, while soft and rubbery polymers ethylene propylene diene monomer and polyethylene-chlorinated were the dominant polymers found in invertebrates. Microplastic polymer composition and thus polymer density differed significantly between invertebrates and their host sediment. Trophic transfer at the base of the food web appears to have a filter function with respect to microplastic particle types and shapes. Together with the very high ingestion rates, this has clear implications for ecological and human health risks, where uptake concerns edible species (e.g., Astacidea).


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Água Doce , Sedimentos Geológicos , Humanos , Invertebrados , Plásticos , Poluentes Químicos da Água/análise
17.
J Geophys Res Oceans ; 126(4): e2020JC017098, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34221786

RESUMO

Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timescales and the time to reach the depth where particles stop sinking. We combine NEMO-MEDUSA 2.0 output, that represents hydrodynamic and biological properties of seawater, with a particle-tracking framework. Different sizes and densities of particles (for different types of plastic) are simulated, showing that the global distribution of sinking timescales is largely size-dependent as opposed to density-dependent. The smallest particles we simulate (0.1 µm) start sinking almost immediately around the globe and their trajectories take the longest time to reach their first sinking depth (relative to larger particles). In oligotrophic subtropical gyres with low algal concentrations, particles between 1 and 0.01 mm do not sink within the simulation time of 90 days. This suggests that in addition to the comparatively well-known physical processes, biological processes might also contribute to the accumulation of floating plastic (of 1-0.01 mm) in subtropical gyres. Particles of 1 µm in the gyres start sinking largely due to vertical advection, whereas in the equatorial Pacific they are more dependent on biofouling. The qualitative impacts of seasonality on sinking timescales are small, however, localized sooner sinking due to spring algal blooms is seen. This study maps processes that affect the sinking of virtual microplastic globally, which could ultimately impact the ocean plastic budget.

18.
Water Res ; 202: 117429, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304075

RESUMO

Understanding the multidimensionality of microplastics is essential for a realistic assessment of the risks these particles pose to the environment and human health. Here, we capture size, shape, area, polymer, volume and mass characteristics of >60,000 individual microplastic particles as continuous distributions. Particles originate from samples taken from different aquatic compartments, including surface water and sediments from the marine and freshwater environment, waste water effluents, and freshwater organisms. Data were obtained using state-of-the-art FTIR-imaging, using the same automated imaging post-processing software. We introduce a workflow with two quality criteria that assure minimum data quality loss due to volumetric and filter area subsampling. We find that probability density functions (PDFs) for particle length follow power law distributions, with median slopes ranging from 2.2 for marine surface water to 3.1 for biota samples, and that these slopes were compartment-specific. Polymer-specific PDFs for particle length demonstrated significant differences in slopes among polymers, hinting at polymer specific sources, removal or fragmentation processes. Furthermore, we provide PDFs for particle width, width to length ratio, area, specific surface area, volume and mass distributions and propose how these can represent the full diversity of toxicologically relevant dose metrics required for the assessment of microplastic risks.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Plásticos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
19.
Environ Sci Technol ; 55(12): 7770-7775, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34027665

RESUMO

Plastic pollution has become one of the most pressing environmental challenges and has received commensurate widespread attention. Although it is a top priority for policymakers and scientists alike, the knowledge required to guide decisions, implement mitigation actions, and assess their outcomes remains inadequate. We argue that an integrated, global monitoring system for plastic pollution is needed to provide comprehensive, harmonized data for environmental, societal, and economic assessments. The initial focus on marine ecosystems has been expanded here to include atmospheric transport and terrestrial and freshwater ecosystems. An earth-system-level plastic observation system is proposed as a hub for collecting and assessing the scale and impacts of plastic pollution across a wide array of particle sizes and ecosystems including air, land, water, and biota and to monitor progress toward ameliorating this problem. The proposed observation system strives to integrate new information and to identify pollution hotspots (i.e., production facilities, cities, roads, ports, etc.) and expands monitoring from marine environments to encompass all ecosystem types. Eventually, such a system will deliver knowledge to support public policy and corporate contributions to the relevant United Nations (UN) Sustainable Development Goals (SDGs).


Assuntos
Ecossistema , Plásticos , Cidades , Monitoramento Ambiental , Poluição Ambiental , Políticas
20.
Environ Sci Technol ; 55(8): 5084-5096, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33724830

RESUMO

Human exposure to microplastic is recognized as a global problem, but the uncertainty, variability, and lifetime accumulation are unresolved. We provide a probabilistic lifetime exposure model for children and adults, which accounts for intake via eight food types and inhalation, intestinal absorption, biliary excretion, and plastic-associated chemical exposure via a physiologically based pharmacokinetic submodel. The model probabilistically simulates microplastic concentrations in the gut, body tissue, and stool, the latter allowing validation against empirical data. Rescaling methods were used to ensure comparability between microplastic abundance data. Microplastic (1-5000 µm) median intake rates are 553 particles/capita/day (184 ng/capita/day) and 883 particles/capita/day (583 ng/capita/day) for children and adults, respectively. This intake can irreversibly accumulate to 8.32 × 103 (90% CI, 7.08 × 102-1.91 × 106) particles/capita or 6.4 (90% CI, 0.1-2.31 × 103) ng/capita for children until age 18, and up to 5.01 × 104 (90% CI, 5.25 × 103-9.33 × 106) particles/capita or 40.7 (90% CI, 0.8-9.85 × 103) ng/capita for adults until age 70 in the body tissue for 1-10 µm particles. Simulated microplastic concentrations in stool agree with empirical data. Chemical absorption from food and ingested microplastic of the nine intake media based on biphasic, reversible, and size-specific sorption kinetics, reveals that the contribution of microplastics to total chemical intake is small. The as-yet-unknown contributions of other food types are discussed in light of future research needs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adolescente , Adulto , Idoso , Criança , Monitoramento Ambiental , Humanos , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...