Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(2): 151403, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38503131

RESUMO

Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contrast, the interactions between the three cytoskeletal networks are relatively unexplored. They are coupled via crosslinkers of the plakin family such as plectin. These are challenging proteins for reconstitution because of their giant size and multidomain structure. Here we engineer a recombinant actin-vimentin crosslinker protein called 'ACTIF' that provides a minimal model system for plectin, recapitulating its modular design with actin-binding and intermediate filament-binding domains separated by a coiled-coil linker for dimerisation. We show by fluorescence and electron microscopy that ACTIF has a high binding affinity for vimentin and actin and creates mixed actin-vimentin bundles. Rheology measurements show that ACTIF-mediated crosslinking strongly stiffens actin-vimentin composites. Finally, we demonstrate the modularity of this approach by creating an ACTIF variant with the intermediate filament binding domain of Adenomatous Polyposis Coli. Our protein engineering approach provides a new cell-free system for the biophysical characterization of intermediate filament-binding crosslinkers and for understanding the mechanical synergy between actin and vimentin in mesenchymal cells.

2.
Proc Natl Acad Sci U S A ; 121(11): e2313162121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451946

RESUMO

Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.


Assuntos
Colágeno , Água , Água/química , Termodinâmica , Hidrogênio
3.
J Mater Sci Mater Med ; 35(1): 8, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285167

RESUMO

The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization.


Assuntos
Fibrina , Trombose , Humanos , Plasma , Microscopia Confocal , Microscopia Eletrônica de Varredura
4.
J Thromb Haemost ; 22(3): 715-726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940047

RESUMO

BACKGROUND: Fibrinogen is a plasma protein forming the fibrin scaffold of blood clots. Its mechanical properties therefore affect the risk of bleeding as well as thrombosis. There has been much recent interest in the biophysical mechanisms controlling fibrin mechanics; however, the role of molecular heterogeneity of the circulating fibrinogen in determining clot mechanical function remains poorly characterized. OBJECTIVES: By comparing 2 fibrinogen variants where the only difference is the Aα-chain length, with one variant having a globular domain at its C-terminus, this study aimed to reveal how the molecular structure impacts the structure and mechanics of fibrin networks. METHODS: We characterized the mechanical response to large shear for networks formed from 2 recombinant fibrinogen variants: the most prevalent variant in circulation with a molecular weight of 340 kDa (recombinant human fibrinogen [rFib] 340) and a minor variant with a molecular weight of 420 kDa (rFib420). RESULTS: We show that the elastic properties of the 2 variants are identical when fibrin is cross-linked with factor XIIIa but differ strongly in its absence. Uncross-linked rFib420 networks are softer and up to 3-fold more extensible than rFib340 networks. Electron microscopy imaging showed that the 2 variants formed networks with a comparable structure, except at 4 mg/mL, where rFib420 formed denser networks. CONCLUSION: We propose that the αEC domains of rFib420 increase the extensibility of uncross-linked fibrin networks by promoting protofibril sliding, which is blocked by FXIIIa cross-linking. Our findings can help explain the functional role of different circulating fibrinogen variants in blood clot mechanics and tissue repair.


Assuntos
Hemostáticos , Trombose , Humanos , Fibrina/química , Fator XIIIa/química , Fibrinogênio/metabolismo , Coagulação Sanguínea
5.
Small Methods ; 7(12): e2300416, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37464561

RESUMO

Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules of cell function inside a single container. Giant unilamellar vesicles (GUVs) have emerged as a suitable container with many methods available for their production. Well-studied swelling-based methods offer a wide range of lipid compositions but at the expense of limited encapsulation efficiency. Emulsion-based methods, on the other hand, excel at encapsulation but are only effective with a limited set of membrane compositions and may entrap residual additives in the lipid bilayer. Since the ultimate artificial cell will need to comply with both specific membrane and encapsulation requirements, there is still no one-method-fits-all solution for GUV formation available today. This review discusses the state of the art in different GUV production methods and their compatibility with GUV requirements and operational requirements such as reproducibility and ease of use. It concludes by identifying the most pressing issues and proposes potential avenues for future research to bring us one step closer to turning artificial cells into a reality.


Assuntos
Células Artificiais , Lipossomas Unilamelares , Lipossomas Unilamelares/metabolismo , Células Artificiais/metabolismo , Reprodutibilidade dos Testes , Bicamadas Lipídicas , Emulsões
6.
J Thromb Haemost ; 21(10): 2747-2758, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336436

RESUMO

BACKGROUND: Previous studies identified decreased clot permeability, without differences in fibrin fiber density in clots, from patients with cirrhosis compared with those from healthy controls (HCs). Fibrinogen hypersialylation could be the reason for this discrepancy. OBJECTIVES: The aim of this work was to study mechanical properties of clots and reassess clot permeability in relation to hypersialylation in patients with stable cirrhosis, acute decompensation, and acute-on-chronic liver failure (ACLF). Sepsis patients without liver disease were included to distinguish between liver-specific and inflammation-driven phenotypes. METHODS: Pooled plasma was used for rheology and permeability experiments. Permeability was assessed with compression using a rheometer and by liquid permeation. Purified fibrinogen treated with neuraminidase was used to study the effects of fibrinogen hypersialylation on liquid permeation. RESULTS: Mechanical properties of clots from patients with stable cirrhosis and acute decompensation were similar to those of clots from HCs, but clots from patients with ACLF were softer and ruptured at lower shear stress. Clots from sepsis patients without liver disease were stiffer than those from the other groups, but this effect disappeared after adjusting for increased plasma fibrinogen concentrations. Permeability was similar between clots under compression from HCs and clots under compression from patients but decreased with increasing disease severity in liquid permeation. Removal of fibrinogen sialic acid residues increased permeability more in patients than in controls. CONCLUSION: Clots from patients with ACLF have weak mechanical properties despite unaltered fibrin fiber density. Previous liquid permeation experiments may have erroneously concluded that clots from patients with ACLF are prothrombotic as fibrinogen hypersialylation leads to underestimation of clot permeability in this setting, presumably due to enhanced water retention.


Assuntos
Insuficiência Hepática Crônica Agudizada , Hemostáticos , Sepse , Trombose , Humanos , Fibrina/química , Fibrinogênio/química , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Fibrose , Sepse/complicações , Fibrinólise
7.
Thromb Haemost ; 123(8): 808-839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36913975

RESUMO

The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of-the-art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i.e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID-19-associated coagulopathy is revisited.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Humanos , Anticoagulantes/uso terapêutico , Coagulação Sanguínea , Hemostasia , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Hemorragia/tratamento farmacológico
8.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779972

RESUMO

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

9.
Biomater Adv ; 146: 213289, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724550

RESUMO

Tumor initiation and progression are critically dependent on interaction of cancer cells with their cellular and extracellular microenvironment. Alterations in the composition, integrity, and mechanical properties of the extracellular matrix (ECM) dictate tumor processes including cell proliferation, migration, and invasion. Also in primary liver cancer, consisting of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the dysregulation of the extracellular environment by liver fibrosis and tumor desmoplasia is pertinent. Yet, the exact changes occurring in liver cancer ECM remain uncharacterized and underlying tumor-promoting mechanisms remain largely unknown. Herein, an integrative molecular and mechanical approach is used to extensively characterize the ECM of HCC and CCA tumors by utilizing an optimized decellularization technique. We identified a myriad of proteins in both tumor and adjacent liver tissue, uncovering distinct malignancy-related ECM signatures. The resolution of this approach unveiled additional ECM-related proteins compared to large liver cancer transcriptomic datasets. The differences in ECM protein composition resulted in divergent mechanical properties on a macro- and micro-scale that are tumor-type specific. Furthermore, the decellularized tumor ECM was employed to create a tumor-specific hydrogel that supports patient-derived tumor organoids, which provides a new avenue for personalized medicine applications. Taken together, this study contributes to a better understanding of alterations to composition, stiffness, and collagen alignment of the tumor ECM that occur during liver cancer development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteômica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Microambiente Tumoral/genética
10.
Lab Chip ; 23(7): 1768-1778, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36809459

RESUMO

Cell spheroids are in vitro multicellular model systems that mimic the crowded micro-environment of biological tissues. Their mechanical characterization can provide valuable insights in how single-cell mechanics and cell-cell interactions control tissue mechanics and self-organization. However, most measurement techniques are limited to probing one spheroid at a time, require specialized equipment and are difficult to handle. Here, we developed a microfluidic chip that follows the concept of glass capillary micropipette aspiration in order to quantify the viscoelastic behavior of spheroids in an easy-to-handle, more high-throughput manner. Spheroids are loaded in parallel pockets via a gentle flow, after which spheroid tongues are aspirated into adjacent aspiration channels using hydrostatic pressure. After each experiment, the spheroids are easily removed from the chip by reversing the pressure and new spheroids can be injected. The presence of multiple pockets with a uniform aspiration pressure, combined with the ease to conduct successive experiments, allows for a high throughput of tens of spheroids per day. We demonstrate that the chip provides accurate deformation data when working at different aspiration pressures. Lastly, we measure the viscoelastic properties of spheroids made of different cell lines and show how these are consistent with previous studies using established experimental techniques. In summary, our chip provides a high-throughput way to measure the viscoelastic deformation behavior of cell spheroids, in order to mechanophenotype different tissue types and examine the link between cell-intrinsic properties and overall tissue behavior.


Assuntos
Microfluídica , Esferoides Celulares , Linhagem Celular
11.
Biophys J ; 122(11): 2311-2324, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806830

RESUMO

The actin cortex is a complex cytoskeletal machinery that drives and responds to changes in cell shape. It must generate or adapt to plasma membrane curvature to facilitate diverse functions such as cell division, migration, and phagocytosis. Due to the complex molecular makeup of the actin cortex, it remains unclear whether actin networks are inherently able to sense and generate membrane curvature, or whether they rely on their diverse binding partners to accomplish this. Here, we show that curvature sensing is an inherent capability of branched actin networks nucleated by Arp2/3 and VCA. We develop a robust method to encapsulate actin inside giant unilamellar vesicles (GUVs) and assemble an actin cortex at the inner surface of the GUV membrane. We show that actin forms a uniform and thin cortical layer when present at high concentration and distinct patches associated with negative membrane curvature at low concentration. Serendipitously, we find that the GUV production method also produces dumbbell-shaped GUVs, which we explain using mathematical modeling in terms of membrane hemifusion of nested GUVs. We find that branched actin networks preferentially assemble at the neck of the dumbbells, which possess a micrometer-range convex curvature comparable with the curvature of the actin patches found in spherical GUVs. Minimal branched actin networks can thus sense membrane curvature, which may help mammalian cells to robustly recruit actin to curved membranes to facilitate diverse cellular functions such as cytokinesis and migration.


Assuntos
Citoesqueleto de Actina , Actinas , Animais , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Lipossomas Unilamelares/química , Mamíferos/metabolismo
12.
Biomacromolecules ; 24(1): 489-501, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36516874

RESUMO

The biofabrication of structural proteins with controllable properties via amino acid sequence design is interesting for biomedicine and biotechnology, yet a complete framework that connects amino acid sequence to material properties is unavailable, despite great progress to establish design rules for synthesizing peptides and proteins with specific conformations (e.g., unfolded, helical, ß-sheets, or ß-turns) and intermolecular interactions (e.g., amphipathic peptides or hydrophobic domains). Molecular dynamics (MD) simulations can help in developing such a framework, but the lack of a standardized way of interpreting the outcome of these simulations hinders their predictive value for the design of de novo structural proteins. To address this, we developed a model that unambiguously classifies a library of de novo elastin-like polypeptides (ELPs) with varying numbers and locations of hydrophobic/hydrophilic and physical/chemical-cross-linking blocks according to their thermoresponsiveness at physiological temperature. Our approach does not require long simulation times or advanced sampling methods. Instead, we apply (un)supervised data analysis methods to a data set of molecular properties from relatively short MD simulations (150 ns). We also experimentally investigate hydrogels of those ELPs from the library predicted to be thermoresponsive, revealing several handles to tune their mechanical and structural properties: chain hydrophilicity/hydrophobicity or block distribution control the viscoelasticity and thermoresponsiveness, whereas ELP concentration defines the network permeability. Our findings provide an avenue to accelerate the design of de novo ELPs with bespoke phase behavior and material properties.


Assuntos
Elastina , Hidrogéis , Elastina/química , Peptídeos/química , Sequência de Aminoácidos , Temperatura
13.
Acta Biomater ; 157: 263-274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509400

RESUMO

Fibrous networks are essential structural components of biological and engineered materials. Accordingly, many approaches have been developed to quantify their structural properties, which define their material properties. However, a comprehensive overview and comparison of methods is lacking. Therefore, we systematically searched for automated tools quantifying network characteristics in confocal, stimulated emission depletion (STED) or scanning electron microscopy (SEM) images and compared these tools by applying them to fibrin, a prototypical fibrous network in thrombi. Structural properties of fibrin such as fiber diameter and alignment are clinically relevant, since they influence the risk of thrombosis. Based on a systematic comparison of the automated tools with each other, manual measurements, and simulated networks, we provide guidance to choose appropriate tools for fibrous network quantification depending on imaging modality and structural parameter. These tools are often able to reliably measure relative changes in network characteristics, but absolute numbers should be interpreted with care. STATEMENT OF SIGNIFICANCE: Structural properties of fibrous networks define material properties of many biological and engineered materials. Many methods exist to automatically quantify structural properties, but an overview and comparison is lacking. In this work, we systematically searched for all publicly available automated analysis tools that can quantify structural properties of fibrous networks. Next, we compared them by applying them to microscopy images of fibrin networks. We also benchmarked the automated tools against manual measurements or synthetic images. As a result, we give advice on which automated analysis tools to use for specific structural properties. We anticipate that researchers from a large variety of fields, ranging from thrombosis and hemostasis to cancer research, and materials science, can benefit from our work.


Assuntos
Trombose , Humanos , Fibrina/química , Microscopia
14.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562751

RESUMO

Septins are cytoskeletal proteins conserved from algae and protists to mammals. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether septins organize as filaments in cells and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay, we show that all septins decorating actin stress fibers are octamer-containing filaments. Depleting octamers or preventing septins from polymerizing leads to a loss of stress fibers and reduced cell stiffness. Super-resolution microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that septin filaments are membrane bound and largely immobilized. Finally, reconstitution assays showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin filaments at the plasma membrane.


Assuntos
Actinas , Septinas , Humanos , Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Microscopia , Septinas/análise
15.
Adv Healthc Mater ; 12(2): e2201891, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308047

RESUMO

3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.


Assuntos
Bioimpressão , Células-Tronco Mesenquimais , Humanos , Engenharia Tecidual , Alicerces Teciduais/química , Ácido Hialurônico , Cartilagem , Hidrogéis , Alginatos/química , Impressão Tridimensional
16.
J Vis Exp ; (186)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36063014

RESUMO

Membrane remodeling occurs constantly at the plasma membrane and within cellular organelles. To fully dissect the role of the environment (ionic conditions, protein and lipid compositions, membrane curvature) and the different partners associated with specific membrane reshaping processes, we undertake in vitro bottom-up approaches. In recent years, there has been keen interest in revealing the role of septin proteins associated with major diseases. Septins are essential and ubiquitous cytoskeletal proteins that interact with the plasma membrane. They are implicated in cell division, cell motility, neuro-morphogenesis, and spermiogenesis, among other functions. It is, therefore, important to understand how septins interact and organize at membranes to subsequently induce membrane deformations and how they can be sensitive to specific membrane curvatures. This article aims to decipher the interplay between the ultra-structure of septins at a molecular level and the membrane remodeling occurring at a micron scale. To this end, budding yeast, and mammalian septin complexes were recombinantly expressed and purified. A combination of in vitro assays was then used to analyze the self-assembly of septins at the membrane. Supported lipid bilayers (SLBs), giant unilamellar vesicles (GUVs), large unilamellar vesicles (LUVs), and wavy substrates were used to study the interplay between septin self-assembly, membrane reshaping, and membrane curvature.


Assuntos
Septinas , Lipossomas Unilamelares , Animais , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Bicamadas Lipídicas/química , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/química , Septinas/genética , Septinas/metabolismo , Lipossomas Unilamelares/metabolismo
17.
Nat Mater ; 21(9): 1019-1023, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008604

RESUMO

Molecular catch bonds are ubiquitous in biology and essential for processes like leucocyte extravasion1 and cellular mechanosensing2. Unlike normal (slip) bonds, catch bonds strengthen under tension. The current paradigm is that this feature provides 'strength on demand3', thus enabling cells to increase rigidity under stress1,4-6. However, catch bonds are often weaker than slip bonds because they have cryptic binding sites that are usually buried7,8. Here we show that catch bonds render reconstituted cytoskeletal actin networks stronger than slip bonds, even though the individual bonds are weaker. Simulations show that slip bonds remain trapped in stress-free areas, whereas weak binding allows catch bonds to mitigate crack initiation by moving to high-tension areas. This 'dissociation on demand' explains how cells combine mechanical strength with the adaptability required for shape change, and is relevant to diseases where catch bonding is compromised7,9, including focal segmental glomerulosclerosis10 caused by the α-actinin-4 mutant studied here. We surmise that catch bonds are the key to create life-like materials.


Assuntos
Actinas , Ligação Proteica
18.
J Vis Exp ; (184)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35781524

RESUMO

Cells can crawl, self-heal, and tune their stiffness due to their remarkably dynamic cytoskeleton. As such, reconstituting networks of cytoskeletal biopolymers may lead to a host of active and adaptable materials. However, engineering such materials with precisely tuned properties requires measuring how the dynamics depend on the network composition and synthesis methods. Quantifying such dynamics is challenged by variations across the time, space, and formulation space of composite networks. The protocol here describes how the Fourier analysis technique, differential dynamic microscopy (DDM), can quantify the dynamics of biopolymer networks and is particularly well suited for studies of cytoskeleton networks. DDM works on time sequences of images acquired using a range of microscopy modalities, including laser-scanning confocal, widefield fluorescence, and brightfield imaging. From such image sequences, one can extract characteristic decorrelation times of density fluctuations across a span of wave vectors. A user-friendly, open-source Python package to perform DDM analysis is also developed. With this package, one can measure the dynamics of labeled cytoskeleton components or of embedded tracer particles, as demonstrated here with data of intermediate filament (vimentin) networks and active actin-microtubule networks. Users with no prior programming or image processing experience will be able to perform DDM using this software package and associated documentation.


Assuntos
Citoesqueleto , Microscopia , Actinas , Filamentos Intermediários , Microtúbulos
19.
J Vis Exp ; (184)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35815970

RESUMO

Septins are a family of conserved eukaryotic GTP-binding proteins that can form cytoskeletal filaments and higher-order structures from hetero-oligomeric complexes. They interact with other cytoskeletal components and the cell membrane to participate in important cellular functions such as migration and cell division. Due to the complexity of septins' many interactions, the large number of septin genes (13 in humans), and the ability of septins to form hetero-oligomeric complexes with different subunit compositions, cell-free reconstitution is a vital strategy to understand the basics of septin biology. The present paper first describes a method to purify recombinant septins in their hetero-oligomeric form using a two-step affinity chromatography approach. Then, the process of quality control used to check for the purity and integrity of the septin complexes is detailed. This process combines native and denaturing gel electrophoresis, negative stain electron microscopy, and interferometric scattering microscopy. Finally, a description of the process to check for the polymerization ability of septin complexes using negative stain electron microscopy and fluorescent microscopy is given. This demonstrates that it is possible to produce high-quality human septin hexamers and octamers containing different isoforms of septin_9, as well as Drosophila septin hexamers.


Assuntos
Citoesqueleto , Septinas , Citoesqueleto/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Controle de Qualidade , Septinas/química , Septinas/genética , Septinas/metabolismo
20.
Front Cell Dev Biol ; 10: 882037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478961

RESUMO

The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...