Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(1): 5, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539656

RESUMO

We isolated 20 SARS-CoV-2 strains from positive clinical samples collected in Columbus, Ohio, and investigated the replication of one pair of isolates: a clade 20G strain and a variant of this strain carrying a Q677H mutation in the spike protein and six other amino acid mutations. The OSU.20G variant replicated to a higher peak infectious titer than the 20G base strain in Vero-E6 cells, but the titers were similar when both strains were grown in Calu-3 cells. These results suggest that the OSU.20G variant has increased replication fitness compared to the 20G base strain. This may have contributed to its emergence in December 2020-January 2021.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Mutação
2.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231013

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models.


Assuntos
Displasia Arritmogênica Ventricular Direita , Animais , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Desmoplaquinas/genética , Modelos Animais de Doenças , Coração , Humanos , Camundongos , Fenótipo
3.
Cells ; 11(4)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203314

RESUMO

Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/-). ZO-1+/- mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/- mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/- mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/- cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias.


Assuntos
Miocárdio , Junções Íntimas , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
4.
Transl Res ; 239: 1-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400365

RESUMO

Heritable thoracic aortic disease and familial thoracic aortic aneurysm/dissection are important causes of human morbidity/mortality, most without identifiable genetic cause. In a family with familial thoracic aortic aneurysm/dissection, we identified a missense p. (Ser178Arg) variant in PLOD1 segregating with disease, and evaluated PLOD1 enzymatic activity, collagen characteristics and in human aortic vascular smooth muscle cells, studied the effect on function. Comparison with homologous PLOD3 enzyme indicated that the pathogenic variant may affect the N-terminal glycosyltransferase domain, suggesting unprecedented PLOD1 activity. In vitro assays demonstrated that wild-type PLOD1 is capable of processing UDP-glycan donor substrates, and that the variant affects the folding stability of the glycosyltransferase domain and associated enzymatic functions. The PLOD1 substrate lysine was elevated in the proband, however the enzymatic product hydroxylysine and total collagen content was not different, albeit despite collagen fibril narrowing and preservation of collagen turnover. In VSMCs overexpressing wild-type PLOD1, there was upregulation in procollagen gene expression (secretory function) which was attenuated in the variant, consistent with loss-of-function. In comparison, si-PLOD1 cells demonstrated hypercontractility and upregulation of contractile markers, providing evidence for phenotypic switching. Together, the findings suggest that the PLOD1 product is preserved, however newly identified glucosyltransferase activity of PLOD1 appears to be affected by folding stability of the variant, and is associated with compensatory vascular smooth muscle cells phenotypic switching to support collagen production, albeit with less robust fibril girth. Future studies should focus on the impact of PLOD1 folding/variant stability on the tertiary structure of collagen and ECM interactions.


Assuntos
Aneurisma da Aorta Torácica/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Adulto , Substituição de Aminoácidos , Aorta/fisiopatologia , Aneurisma da Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/cirurgia , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Feminino , Humanos , Masculino , Músculo Liso Vascular/fisiopatologia , Mutação de Sentido Incorreto , Linhagem , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/química
6.
J Cardiovasc Dev Dis ; 7(2)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466575

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial "concealed phase" that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/ß-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.

7.
Dev Cell ; 52(6): 748-763.e6, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32109384

RESUMO

Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the CTG repeat expansion in the 3'-untranslated region of DMPK gene. Heart dysfunctions occur in ∼80% of DM1 patients and are the second leading cause of DM1-related deaths. Herein, we report that upregulation of a non-muscle splice isoform of RNA-binding protein RBFOX2 in DM1 heart tissue-due to altered splicing factor and microRNA activities-induces cardiac conduction defects in DM1 individuals. Mice engineered to express the non-muscle RBFOX240 isoform in heart via tetracycline-inducible transgenesis, or CRISPR/Cas9-mediated genome editing, reproduced DM1-related cardiac conduction delay and spontaneous episodes of arrhythmia. Further, by integrating RNA binding with cardiac transcriptome datasets from DM1 patients and mice expressing the non-muscle RBFOX2 isoform, we identified RBFOX240-driven splicing defects in voltage-gated sodium and potassium channels, which alter their electrophysiological properties. Thus, our results uncover a trans-dominant role for an aberrantly expressed RBFOX240 isoform in DM1 cardiac pathogenesis.


Assuntos
Potenciais de Ação , Frequência Cardíaca , Distrofia Miotônica/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , Proteínas Repressoras/genética , Adulto , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/fisiopatologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
8.
Biomolecules ; 10(2)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023981

RESUMO

Ankyrin-B (encoded by ANK2), originally identified as a key cytoskeletal-associated protein in the brain, is highly expressed in the heart and plays critical roles in cardiac physiology and cell biology. In the heart, ankyrin-B plays key roles in the targeting and localization of key ion channels and transporters, structural proteins, and signaling molecules. The role of ankyrin-B in normal cardiac function is illustrated in animal models lacking ankyrin-B expression, which display significant electrical and structural phenotypes and life-threatening arrhythmias. Further, ankyrin-B dysfunction has been associated with cardiac phenotypes in humans (now referred to as "ankyrin-B syndrome") including sinus node dysfunction, heart rate variability, atrial fibrillation, conduction block, arrhythmogenic cardiomyopathy, structural remodeling, and sudden cardiac death. Here, we review the diverse roles of ankyrin-B in the vertebrate heart with a significant focus on ankyrin-B-linked cell- and molecular-pathways and disease.


Assuntos
Anquirinas/genética , Anquirinas/fisiologia , Arritmias Cardíacas/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Citoesqueleto/metabolismo , Variação Genética , Bloqueio Cardíaco , Frequência Cardíaca , Humanos , Canais Iônicos , Fenótipo , Domínios Proteicos , Isoformas de Proteínas , Transdução de Sinais
10.
Dis Model Mech ; 12(6)2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31138536

RESUMO

Congenital heart defects affect ∼2% of live births and often involve malformations of the semilunar (aortic and pulmonic) valves. We previously reported a highly penetrant GATA4 p.Gly296Ser mutation in familial, congenital atrial septal defects and pulmonic valve stenosis and showed that mice harboring the orthologous G295S disease-causing mutation display not only atrial septal defects, but also semilunar valve stenosis. Here, we aimed to characterize the role of Gata4 in semilunar valve development and stenosis using the Gata4G295Ski/wt mouse model. GATA4 is highly expressed in developing valve endothelial and interstitial cells. Echocardiographic examination of Gata4G295Ski/wt mice at 2 months and 1 year of age identified functional semilunar valve stenosis predominantly affecting the aortic valve with distal leaflet thickening and severe extracellular matrix (ECM) disorganization. Examination of the aortic valve at earlier postnatal timepoints demonstrated similar ECM abnormalities consistent with congenital disease. Analysis at embryonic timepoints showed a reduction in aortic valve cushion volume at embryonic day (E)13.5, predominantly affecting the non-coronary cusp (NCC). Although total cusp volume recovered by E15.5, the NCC cusp remained statistically smaller. As endothelial to mesenchymal transition (EMT)-derived cells contribute significantly to the NCC, we performed proximal outflow tract cushion explant assays and found EMT deficits in Gata4G295Ski/wt embryos along with deficits in cell proliferation. RNA-seq analysis of E15.5 outflow tracts of mutant embryos suggested a disease state and identified changes in genes involved in ECM and cell migration as well as dysregulation of Wnt signaling. By utilizing a mouse model harboring a human disease-causing mutation, we demonstrate a novel role for GATA4 in congenital semilunar valve stenosis.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Mutação/genética , Animais , Animais Recém-Nascidos , Valva Aórtica/embriologia , Valva Aórtica/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Transição Epitelial-Mesenquimal , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/patologia , Heterozigoto , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt
11.
J Biol Chem ; 294(24): 9576-9591, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31064843

RESUMO

Spectrins are cytoskeletal proteins essential for membrane biogenesis and regulation and serve critical roles in protein targeting and cellular signaling. αII spectrin (SPTAN1) is one of two α spectrin genes and αII spectrin dysfunction is linked to alterations in axon initial segment formation, cortical lamination, and neuronal excitability. Furthermore, human αII spectrin loss-of-function variants cause neurological disease. As global αII spectrin knockout mice are embryonic lethal, the in vivo roles of αII spectrin in adult heart are unknown and untested. Here, based on pronounced alterations in αII spectrin regulation in human heart failure we tested the in vivo roles of αII spectrin in the vertebrate heart. We created a mouse model of cardiomyocyte-selective αII spectrin-deficiency (cKO) and used this model to define the roles of αII spectrin in cardiac function. αII spectrin cKO mice displayed significant structural, cellular, and electrical phenotypes that resulted in accelerated structural remodeling, fibrosis, arrhythmia, and mortality in response to stress. At the molecular level, we demonstrate that αII spectrin plays a nodal role for global cardiac spectrin regulation, as αII spectrin cKO hearts exhibited remodeling of αI spectrin and altered ß-spectrin expression and localization. At the cellular level, αII spectrin deficiency resulted in altered expression, targeting, and regulation of cardiac ion channels NaV1.5 and KV4.3. In summary, our findings define critical and unexpected roles for the multifunctional αII spectrin protein in the heart. Furthermore, our work provides a new in vivo animal model to study the roles of αII spectrin in the cardiomyocyte.


Assuntos
Arritmias Cardíacas/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Isquemia/patologia , Miócitos Cardíacos/patologia , Espectrina/fisiologia , Animais , Arritmias Cardíacas/etiologia , Células Cultivadas , Feminino , Insuficiência Cardíaca/etiologia , Humanos , Isquemia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
12.
J Am Heart Assoc ; 8(4): e009960, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30741589

RESUMO

Background The aortic valve of the heart experiences constant mechanical stress under physiological conditions. Maladaptive valve injury responses contribute to the development of valvular heart disease. Here, we test the hypothesis that MG 53 (mitsugumin 53), an essential cell membrane repair protein, can protect valvular cells from injury and fibrocalcific remodeling processes associated with valvular heart disease. Methods and Results We found that MG 53 is expressed in pig and human patient aortic valves and observed aortic valve disease in aged Mg53-/- mice. Aortic valves of Mg53-/- mice showed compromised cell membrane integrity. In vitro studies demonstrated that recombinant human MG 53 protein protects primary valve interstitial cells from mechanical injury and that, in addition to mediating membrane repair, recombinant human MG 53 can enter valve interstitial cells and suppress transforming growth factor-ß-dependent activation of fibrocalcific signaling. Conclusions Together, our data characterize valve interstitial cell membrane repair as a novel mechanism of protection against valvular remodeling and assess potential in vivo roles of MG 53 in preventing valvular heart disease.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Calcinose/metabolismo , Proteínas com Motivo Tripartido/biossíntese , Remodelação Ventricular , Animais , Valva Aórtica/patologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Biomarcadores/metabolismo , Western Blotting , Calcinose/diagnóstico , Calcinose/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Transdução de Sinais , Estresse Mecânico , Suínos
13.
Circ Res ; 124(5): 737-746, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602331

RESUMO

RATIONALE: Voltage-gated Na+ channel ( INa) function is critical for normal cardiac excitability. However, the Na+ channel late component ( INa,L) is directly associated with potentially fatal forms of congenital and acquired human arrhythmia. CaMKII (Ca2+/calmodulin-dependent kinase II) enhances INa,L in response to increased adrenergic tone. However, the pathways that negatively regulate the CaMKII/Nav1.5 axis are unknown and essential for the design of new therapies to regulate the pathogenic INa,L. OBJECTIVE: To define phosphatase pathways that regulate INa,L in vivo. METHODS AND RESULTS: A mouse model lacking a key regulatory subunit (B56α) of the PP (protein phosphatase) 2A holoenzyme displayed aberrant action potentials after adrenergic stimulation. Unbiased computational modeling of B56α KO (knockout) mouse myocyte action potentials revealed an unexpected role of PP2A in INa,L regulation that was confirmed by direct INa,L recordings from B56α KO myocytes. Further, B56α KO myocytes display decreased sensitivity to isoproterenol-induced induction of arrhythmogenic INa,L, and reduced CaMKII-dependent phosphorylation of Nav1.5. At the molecular level, PP2A/B56α complex was found to localize and coimmunoprecipitate with the primary cardiac Nav channel, Nav1.5. CONCLUSIONS: PP2A regulates Nav1.5 activity in mouse cardiomyocytes. This regulation is critical for pathogenic Nav1.5 late current and requires PP2A-B56α. Our study supports B56α as a novel target for the treatment of arrhythmia.


Assuntos
Arritmias Cardíacas/enzimologia , Frequência Cardíaca , Ativação do Canal Iônico , Miócitos Cardíacos/enzimologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína Fosfatase 2/metabolismo , Potenciais de Ação , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Fosforilação , Proteína Fosfatase 2/deficiência , Proteína Fosfatase 2/genética , Fatores de Tempo
15.
J Clin Invest ; 128(12): 5561-5572, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30226828

RESUMO

Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein ßIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated ßIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that ßIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific ßIV-spectrin-KO (ßIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in ßIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based "statosome" will be effective at suppressing maladaptive remodeling in response to chronic stress.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Espectrina/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Transgênicos , Fosforilação , Fator de Transcrição STAT3/genética , Espectrina/genética
16.
JCI Insight ; 2(21)2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29093270

RESUMO

An ascending aortic aneurysm (AscAA) is a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a potentially novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Additionally, Notch1+/- mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 is sufficient to cause AscAA. RNA sequencing analysis of the Notch1.129S6+/- aortic root demonstrated gene expression changes consistent with AscAA. These findings are the first to our knowledge to demonstrate an SHF lineage-specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy.


Assuntos
Aneurisma Aórtico/genética , Valva Aórtica/anormalidades , Predisposição Genética para Doença , Haploinsuficiência , Receptor Notch1/genética , Animais , Aorta , Aneurisma Aórtico/patologia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Doença da Válvula Aórtica Bicúspide , Modelos Animais de Doenças , Expressão Gênica , Estudos de Associação Genética , Doenças das Valvas Cardíacas , Camundongos , Camundongos Knockout , Mutação , Fenótipo
17.
Heart Rhythm ; 14(12): 1884-1889, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28765088

RESUMO

Over the past decade, ankyrin-B has been identified as a prominent player in cardiac physiology. Ankyrin-B has a multitude of functions, with roles in expression, localization, and regulation of proteins critical for cardiac excitability, cytoskeletal integrity, and signaling. Furthermore, human ANK2 variants that result in ankyrin-B loss of function are associated with "ankyrin-B syndrome," a complex cardiac phenotype that may include bradycardia and heart rate variability, conduction block, atrial fibrillation, QT interval prolongation, and potentially fatal catecholaminergic polymorphic ventricular tachycardia. However, our understanding of the molecular mechanisms underlying ankyrin-B function at baseline and in disease is still not fully developed owing to the complexity of ankyrin-B gene regulation, number of ankyrin-B-associated molecules, multiple roles of ankyrin-B in the heart and other organs that modulate cardiac function, and a host of unexpected clinical phenotypes. In this review, we summarize known roles of ankyrin-B in the heart and the impact of ankyrin-B dysfunction in animal models and in human disease as well as highlight important new findings illustrating the complexity of ankyrin-B signaling.


Assuntos
Anquirinas/genética , Doenças Cardiovasculares/genética , DNA/genética , Predisposição Genética para Doença , Mutação , Animais , Anquirinas/metabolismo , Doenças Cardiovasculares/metabolismo , Análise Mutacional de DNA , Humanos
18.
Curr Opin Cardiol ; 32(3): 239-245, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28157139

RESUMO

PURPOSE OF REVIEW: Aortic valve disease is relatively common and encompasses both congenital and acquired forms. Bicuspid aortic valve (BAV) is the most common type of cardiac malformation and predisposes to the development of calcific aortic valve disease (CAVD). Since the description of the link between NOTCH1, BAV and CAVD approximately a decade ago, there have been significant advances in the genetic and molecular understanding of these diseases. RECENT FINDINGS: Recent work has defined the congenital cardiac phenotypes linked to mutations in NOTCH1, and in addition, novel etiologic genes for BAV have been discovered using new genetic technologies in humans. Furthermore, several mouse models of BAV have been described defining the role of endothelial Notch1 in aortic valve morphogenesis, whereas others have implicated new genes. These murine models along with other cell-based studies have led to molecular insights in the pathogenesis of CAVD. SUMMARY: These findings provide important insights into the molecular and genetic basis of aortic valve malformations, including BAV, specifically highlighting the etiologic role of endothelial cells. In addition, numerous investigations in to the mechanisms of CAVD demonstrate the importance of developmental origins and signaling pathways as well as communication between valve endothelial cells and the underlying interstitial cells in valve disease onset and progression.

19.
J Am Heart Assoc ; 5(4)2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27107132

RESUMO

BACKGROUND: Congenital heart disease is the most common type of birth defect, affecting ≈2% of the population. Malformations involving the cardiac outflow tract and semilunar valves account for >50% of these cases predominantly because of a bicuspid aortic valve, which has an estimated prevalence of 1% in the population. We previously reported that mutations in NOTCH1 were a cause of bicuspid aortic valve in nonsyndromic autosomal-dominant human pedigrees. Subsequently, we described a highly penetrant mouse model of aortic valve disease, consisting of a bicuspid aortic valve with thickened cusps and associated stenosis and regurgitation, in Notch1-haploinsufficient adult mice backcrossed into a Nos3-null background. METHODS AND RESULTS: Here, we described the congenital cardiac abnormalities in Notch1(+/-);Nos3(-/-) embryos that led to ≈65% lethality by postnatal day 10. Although expected Mendelian ratios of Notch1(+/-);Nos3(-/-) embryos were found at embryonic day 18.5, histological examination revealed thickened, malformed semilunar valve leaflets accompanied by additional anomalies of the cardiac outflow tract including ventricular septal defects and overriding aorta. The aortic valve leaflets of Notch1(+/-);Nos3(-/-) embryos at embryonic day 15.5 were significantly thicker than controls, consistent with a defect in remodeling of the semilunar valve cushions. In addition, we generated mice haploinsufficient for Notch1 specifically in endothelial and endothelial-derived cells in a Nos3-null background and found that Notch1(fl/+);Tie2-Cre(+/-);Nos3(-/-) mice recapitulate the congenital cardiac phenotype of Notch1(+/-);Nos3(-/-) embryos. CONCLUSIONS: Our data demonstrate the role of endothelial Notch1 in the proper development of the semilunar valves and cardiac outflow tract.


Assuntos
Valva Aórtica/anormalidades , DNA/genética , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Valvas Cardíacas/embriologia , Mutação , Receptor Notch1/genética , Animais , Valva Aórtica/embriologia , Valva Aórtica/metabolismo , Doença da Válvula Aórtica Bicúspide , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Doenças das Valvas Cardíacas/embriologia , Doenças das Valvas Cardíacas/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Receptor Notch1/metabolismo
20.
J Cardiovasc Dev Dis ; 2(3): 214-232, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26527432

RESUMO

The heart valve interstitial cell (VIC) population is dynamic and thought to mediate lay down and maintenance of the tri-laminar extracellular matrix (ECM) structure within the developing and mature valve throughout life. Disturbances in the contribution and distribution of valve ECM components are detrimental to biomechanical function and associated with disease. This pathological process is associated with activation of resident VICs that in the absence of disease reside as quiescent cells. While these paradigms have been long standing, characterization of this abundant and ever-changing valve cell population is incomplete. Here we examine the expression pattern of Smooth muscle α-actin, Periostin, Twist1 and Vimentin in cultured VICs, heart valves from healthy embryonic, postnatal and adult mice, as well as mature valves from human patients and established mouse models of disease. We show that the VIC population is highly heterogeneous and phenotypes are dependent on age, species, location, and disease state. Furthermore, we identify phenotypic diversity across common models of mitral valve disease. These studies significantly contribute to characterizing the VIC population in health and disease and provide insights into the cellular dynamics that maintain valve structure in healthy adults and mediate pathologic remodeling in disease states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...